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Abstract
Discovering new promising molecule candidates that could
translate into effective drugs is a key scientific pursuit. How-
ever, factors such as the vastness and discreteness of the
molecular search space pose a formidable technical challenge
in this quest. AI-driven generative models can effectively learn
from data, and offer hope to streamline drug design. In this
article, we review state of the art in generative models that
operate on molecular graphs. We also shed light on some
limitations of the existing methodology and sketch directions to
harness the potential of AI for drug design tasks going forward.
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Introduction
Drug discovery is a cumbersome, time-consuming, and
expensive process with a very low success rate. Search-
ing for new molecules that could, e.g., bind to a protein
target (available explicitly or assumed implicitly) is
complicated due to myriad factors including but not
limited to the overabundance of drug-like structures and
the discreteness of the search space resulting in a
complex and challenging landscape to optimize.

Generative models can exploit strong priors, or inductive
biases, and replace the expensive search operation over
www.sciencedirect.com
the molecular space with a significantly easier verifica-
tion step. Specifically, these models can learn to
generate suggestions for molecules that are similar to a
given dataset of molecules. These generated molecules
can be subsequently screened based on considerations
such as the feasibility of their synthesis [1], binding
affinity to a target protein [2], bioactivity, and physico-
chemical properties.

A variety of generative models have been proposed
recently in the context of drug design. Molecular data
can be expressed in multiple formats, e.g., SMILES
sequences, 2D/3D graphs, Morgan fingerprints, images,
etc.; moreover, the protein targets may or may not be
specified, so accordingly, a wide range of models and
approaches have been developed to handle different
formats and scenarios [3e9] including those inspired by
language models and generative pre-trained trans-
formers (GPT) [10,11]. Here, we focus specifically on

generative models that are based on molecular graphs,
reviewing several methods that have been pro-
posed recently.

The rest of this article is organized as follows. We first
discuss in Section 2 the representation of molecular
data, focusing on the most prominent models for
encoding graph-structured data currently, namely, the
graph neural networks. We then review several recent
generative models for drug design in Section 3. Finally,
in Section 4, we bring attention to some shortcomings of

the existing methods, charting a way forward.
Encoding molecular data
Graph neural networks (GNNs) [12e14] have
continued to gain prominence as models of choice for
encoding molecular graphs (Figure 1). It is well known
that the standard message-passing GNNs are no more
powerful than the color refinement algorithm or 1-
Weisfeiler Leman (1-WL) test for isomorphism [13].
Many of the recent advances in GNNs are motivated by

expressivity considerations, i.e., learning a class of func-
tions with greater representational power than the
existing methods (Figure 2).

Particularly in the molecular context [14], showed
inability of message-passing GNNs to compute graph
properties such as counting the number of rings, or
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mailto:vgarg@csail.mit.edu
mailto:vikas@yaiyai.fi
mailto:vikas@yaiyai.fi
https://twitter.com/@montsgarg
https://twitter.com/@montsgarg
https://www.sciencedirect.com/journal/current-opinion-in-structural-biology/special-issue/10JMXHSGG6C%20https://www.sciencedirect.com/journal/current-opinion-in-structural-biology/special-issue/105ZDMBRP1F
https://doi.org/10.1016/j.sbi.2023.102769
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sbi.2023.102769&domain=pdf
www.sciencedirect.com/science/journal/0959440X
www.sciencedirect.com/science/journal/0959440X


Figure 1

Graph neural network (GNN) in action. GNNs are state-of-the-art models for embedding graphs that form the backbone of most graph-based
generative models. Here, we assume a 2-layer GNN that processes the given input graph over 5 attributed nodes (e.g., atoms). Initially, at time t = 0, each
node starts with its own feature vector as its initial embedding. During each layer, nodes exchange messages with their neighbors on the graph. Nodes
apply transformations to aggregate the information in incoming messages and update their embeddings. Final embedding of node A after two layers, i.e.,
at time t = 2 depends on the embeddings of its neighbors B, C, and D at t = 1, which in turn depends on the embeddings of their respective neighbors at
t = 0. Gray color indicates learnable weights used to aggregate information. Nodes share weights in each layer.

Figure 2

Obtaining effective representations for molecules is a key aspect of molecular modeling. Routinely used drugs such as Penicillin contain (conjoined) rings
that standard message-passing GNNs cannot compute [14]. Therefore, more powerful models, including those that use geometric information (3D co-
ordinates) have emerged recently.

2 Artificial Intelligence (AI) Methodologies in Structural Biology (2024)
determining when conjoined rings are present. The
failure to compute substructures has also been estab-
lished for so-called invariant graph networks [15]. Such

negative results can be countered to an extent with 3D
molecular graphs that incorporate additional spatial or
geometric features [16]. In order to obtain embeddings
for such 3D graphs, geometric GNN models such as H-
DCPN [14], GemNet [17], and SphereNet [18] have
been proposed. Such models often implement directional
Current Opinion in Structural Biology 2024, 84:102769
message passing taking into account distances to the
neighboring nodes, and torsion angles.

Recently, several models used equivariant or invariant
GNN layers to obtain representations that respect the
underlying symmetries (such as rotation, translation,
and reflection) [19], which has led to improved perfor-
mance in various generative molecular tasks [20]. Since
the standard WL test does not suffice for analysis of the
www.sciencedirect.com
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limits on the expressivity of such geometric GNNs, a
geometric version of WL, namely GWL, has been
introduced recently [21]. In particular, GWL can be
invoked to establish the gap in expressivity between
equivariant layers and invariant layers.
Graph-based generative models for
molecules
We now present an overview of some graph-based
generative models that have garnered interest within
the AI community recently.

Flows and diffusion models
Recently, there has been a flurry of works on flow-based
models [22] for molecular generation. These models
can be viewed as successors of hierarchical variational

autoencoders (VAEs) [23] with one key difference,
namely, the encoder and the decoder are aligned with
each other unlike VAEs, where low-dimensional encoding
of data samples into the latent space leads to a shift
between the true data distribution and the reconstructed
one obtained by decoding the latent samples. Specif-
ically, flow models perform a series of bijective, i.e.,
invertible transformations, typically parameterized with
neural networks, to map samples from a tractable distri-
bution (such as Gaussian) to a significantly more complex
distribution. Consequently, flow-based models can pro-

vide exact likelihood estimates unlike VAEs.

To account for the discreteness of molecular graphs,
some flow-based methods for molecular generation rely
on noise to convert discrete data into continuous data
such as GraphAF [24] that add small stochastic noise
during encoding, and subsequently resort to a dequan-
tization step to mitigate the effect of noise. These
methods are susceptible to some other issues, e.g., they
often generate invalid structures that violate chemical
valency rules [27,20]. Therefore, a post-hoc step is

required that checks for the validity of the generated
structures (i.e., graphs) and discards those that violate
the valency of any of the nodes (i.e., atoms).

Some of the issues associated with the above models can
be averted with discrete flows. Specifically, a method
called GraphDF [27] employs discrete latent variables
and performs validity checks as part of the generative
process. Both GraphAF and GraphDF are autoregressive
procedures that incrementally yield atoms (nodes) and
bonds (edges) over several steps. Another prominent

method MoFlow [30] avoids autoregressive generation
by combining an unconditional flow over bonds with a
conditional flow over atoms given bonds, and applying
post-hoc validity correction.

Diffusion-based models have also attracted considerable
traction [35,32]. Unlike flows, diffusion processes
obviate the need for invertible transformations.
www.sciencedirect.com
Specifically, these models incorporate two phases: in the
forward pass samples from the data are treated with
stochastic noise in a Markov chain setting over several
steps so that eventually these samples are distributed
according to a Gaussian distribution. Notably, the for-
ward pass does not consist of any trainable parameters.
In the backward pass, the objective is to map samples
from the Gaussian distribution to samples resembling

data using a sequence of denoising steps that can all be
carried out using deep networks. In particular, a method
based on diffusion called EDM [32] operates simulta-
neously on categorical atom types and continuous atom
coordinates, and generates 3D molecules using a
denoising network that is equivariant to Euclidean
transformations. One major limitation of diffusion pro-
cesses, however, is the enormous computational effort
and time required to train the model as well as to sample
from it.

Neural differential equations (neural ODEs, PDEs, and
SDEs)
Differential equations have long been an important tool

for modeling various physical processes and biochemical
phenomena. Their adroit integration into deep neural
networks [36] has fostered exciting developments in
generative molecular modeling. Neural ODEs derive
inspiration from residual neural networks, and typically
implement continuous flows using a continuum of layers
that are indexed by time unlike standard neural
networks.

Graphs naturally give rise to neural PDEs: the embed-
ding of each node evolves with time based on the

instantaneous embeddings of its neighbors and its own
embedding; this system of coupled ODEs pertains to a
PDE. Some important models in this context include
Ffjord [37], PDE-GCN [25], GRAND [28], and
ModFlow [20]. For instance, ModFlow [20] associates a
continuous normalizing flow with each node. These
flows start independently but then repeatedly interact
with each other, according to the underlying PDE,
toward jointly aligned distributions that can be sampled
to yield molecules. Interestingly, ModFlow shares con-
nections with temporal graph networks [38,39].

SDE-based models have also been successfully applied,
and they often form a bridge between diffusion models
and the so-called score-based generative models
[40,41].

Reinforcement learning (RL)-inspired methods
RL has also inspired new models recently. Prominent
among these is a class of models called GFlowNets
[26,42,43,29,31]. Specifically, GFlowNets train a sto-
chastic policy or generative process for discrete objects,
such as molecular graphs, as a flow network. Specif-
ically, these models consist of two kinds of states:
Current Opinion in Structural Biology 2024, 84:102769
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Table 2

SBDD methods at a glance.

Recent structure-based drug design (SBDD) methods

Molecule design Protein/Antibody design Binding

Pocket2Mol [2] Structured Transformers [10] TANKBind [44]
VAE-based [45] RFDiffusion [46] Equibind [47]
DeepLigBuilder [48] Chroma [49] Diffdock [50]
RGA [51] ProtSeed [52]
DiffSBDD [53] AbODE [54]

4 Artificial Intelligence (AI) Methodologies in Structural Biology (2024)
terminal states that pertain to objects of interest (i.e.,
molecules in our case) and other incomplete, inter-
mediate states. A reward is associated with each ter-
minal state, and any such state is sampled proportional
to its reward through a series of constructive steps
(such as adding a new atom and bond to the existing
structure) (Table 1, Table 2).

Structure-based drug design (SBDD)
Unlike almost all the methods discussed above, SBDD
models have access to the protein target [55]. The goal

of SBDD is to generate suggestions for molecules that
exhibit desirable physicochemical properties besides
having good binding affinity with a specified protein
target. Though the unconditional generative models far
outnumber SBDD models, there have been some
notable developments for SBDD lately [56]. Among
these are models based on autoregressive models [2,57],
variational autoencoders [45], reinforcement learning
[48], genetic algorithms [51], and diffusion models
[53]. Interestingly, these developments in SBDD have
been accompanied by exciting advances in structure-

based (conditional) protein design (and binding) with
models like Structured Transformers [10], TANKBind
[44], Equibind [47], DiffDock [50], RFDiffusion [46],
Chroma [49], ProtSeed [52], and AbODE [54]. In fact,
AbODE [54] reveals connections between models for
molecule design, protein design, and docking, suggest-
ing that similar generative modeling techniques could
be broadly applicable across these tasks.

Property-based molecular optimization
Generative models for drug discovery can be optimized
to search for molecules with better chemical properties
such as QED. Essentially, one can encode an input

(generated) molecule into the learned latent space of an
already-trained generative model and interpolate in this
space along a direction that locally improves the prop-
erty of interest, typically, via several gradient steps.
Finally, a decoding step can be performed to map back
the eventual latent representation into a new molecule.
We refer the reader to Ref. [20] for details.
Table 1

Graph-based methods at a glance. Non-generative methods are
marked by **.

Graph-based methods that do not model interactions with the
target

Flow/Diffusion Neural Differential Equations RL-inspired

GraphAF [24] PDE-GCN** [25] GFlowNets [26]
GraphDF [27] GRAND** [28] QM-guided [29]
MoFlow [30] ModFlow [20] QADD [31]
EDM [32] Sculpting [33]
SID [34]

Current Opinion in Structural Biology 2024, 84:102769
Constrained optimization
Note that property-based molecular optimization does
not ensure that the output (i.e., the modified) molecule
will be similar to the input molecule. Constrained
optimization aims to improve a specified property while
striving to keep the similarity between the input and
output molecules above some threshold. Reinforcement
learning approaches such as Proximal Policy Optimiza-
tion (PPO) have been employed to fine-tune pretrained
generative models for this purpose [27,34].

Other RL-based techniques have also been successfully

employed in the literature for drug design and lead
optimization. For instance, DeepLigBuilder [48] lever-
aged Monte Carlo tree search (MCTS) to suggest new
drug-like compounds having similar binding features to
those of known inhibitors for the main protease of
SARS-CoV-2.
Conclusions and perspectives
We now outline below some limitations of the existing
methodology, highlight emerging trends, and offer our
perspective on some directions that we believe could
propel molecular generative modeling over the next
few years.

Generalization
In pursuit of enhanced expressivity or representational
capacity, generative models for molecular design are
becoming increasingly complex and likely overfit the

training data. Statistical learning theory foundations
state that increased complexity of the hypothesis space
(i.e., the class of functions being learned) inhibits the
generalizability of powerful machine learning models;
i.e., their ability to do well outside the training set. The
need to generalize beyond the training data cannot be
overemphasized [14], and we recommend redirecting
research efforts to devising generative models that strive
for a tradeoff between expressivity and generalization.

Benchmarking
A prevailing trend in the field, especially being
witnessed in leading machine learning conferences, is to
validate new models with experiments on standard data
www.sciencedirect.com
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such as QM9 and Zinc-250k. Many recent methods
already report strong performance on these data; so
focusing on more challenging benchmarks such as
METLIN [58] would benefit the community.

It must also be emphasized that all these datasets are
extremely small, and as such, are unable to capture the
immense diversity of the molecular search space. In our

opinion design of scalable machine learning models that
can effectively process, and learn powerful representa-
tions with, much larger datasets should be one of the
priorities of our community.

Inductive bias
Equivariance and invariance are strong inductive biases.
Similarly, the success of GNNs in representing molec-
ular graphs and Transformers in encoding SMILES se-
quences underscores the significance of incorporating
appropriate inductive bias in the model. GNNs, by
design, tend to capture the local correlations whereas
Transformers attend to a more global context. The
sweet spot for molecular design probably lies some-

where between these two extremes and exploring
alternative schemes such as leveraging random walks to
learn a good representation [39,59] could be fruitful.

Interpretability
We still have little understanding about the structure of
the latent space of generative models for molecules.
Interpretable models can illuminate the relative
importance of the learned latent subspaces towards
model outcomes. Disentanglement, i.e., unraveling the
complex generative factors of variation in the data, is one
specific formalism for interpretability that has shown
some promise in the context of molecular generation

[34]. Disentanglement is known to have benefits from
both generalization and sample complexity perspec-
tives. In particular, it enables learning from fewer sam-
ples compared to models that do not learn
disengaged representations.

The main idea underlying disentanglement is to learn to
isolate essential information for each latent factor in few
dimensions, disparate from the other factors. However,
factors inherent in molecular data are often complex,
and likely cannot be fully segregated from each other.

Therefore, we advocate design of more flexible models
such as the conditional method from Ref. [34] that
could allow for partial disentanglement of molecular
latent spaces.

Evaluation
Once trained, generative models can yield an extremely
large number of suggestions for molecules. However,
from a practical perspective, generating one promising
novel candidate is way more important than suggesting
www.sciencedirect.com
several that do not hold much potential. Many recent
works report results on metrics such as validity, sta-
bility, reconstruction, uniqueness, and novelty. We
emphasize the need for comprehensive evaluation with
more rigorous criteria including, but not limited to,
molecular weight, octanol-water partition coefficient,
synthetic accessibility, quantitative estimation of drug-
likeness, and the MOSES metrics such as Fragment

Similarity, Nearest Neighbor Similarity, and Inter-
nal Diversity.

Topological descriptors
Representational limits of GNNs have recently inspired
design of novel graph representation methods that can
learn multi-scale and long-range topological features,
opening exciting possibilities for molecular datasets that
are known to have a notable topological structure [60].
Two rather parallel lines of work - Topological Deep
Learning (TDL) and Persistent Homology (PH) - have
gained prominence in this context. TDL methods seek
to process part-whole and set-types relations to represent
complex structures or interactions between different

components in data (e.g., atoms in a ring) going beyond
the usual pairwise relations paradigm of message-passing
GNNs [61].

Persistent Homology (PH), a key tool from Topological
Data Analysis (TDA), relies on (learnable) filtration
functions. Specifically, PH seeks to use data samples to
characterize topological invariants such as connected
components of an underlying manifold, yielding global
topological signatures that can be integrated into, and
boost the performance of, graph neural networks

[62e64]. With new insights into its theoretical un-
derpinnings [60,64], PH is set to play an important role
in generative molecular modeling.

Compositionality
As generative models become increasingly complex,
concerns about high costs involved in training new
models from scratch have recently motivated some
works on model reuse and composition [65,33]. In
principle, given multiple pretrained models with each
capturing some particular property, one can compose or
fuse together these models to obtain a composite model
with enhanced capacity. Such composite models enable

complex distributions that adhere to multiple con-
straints, and can be sampled to generate molecules that
exhibit multiple properties thereby paving way for
multi-objective molecular generation [66].

Over the next few years, we anticipate significant
attention toward design of compositional techniques
such as Sculpting [33], which can coordinate the steps of
powerful iterative generative processes like diffusion
models and GFlowNets.
Current Opinion in Structural Biology 2024, 84:102769
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