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Abstract

We introduce a novel score-based diffusion framework named Twigs that incor-
porates multiple co-evolving flows for enriching conditional generation tasks.
Specifically, a central or trunk diffusion process is associated with a primary vari-
able (e.g., graph structure), and additional offshoot or stem processes are dedicated
to dependent variables (e.g., graph properties or labels). A new strategy, which we
call loop guidance, effectively orchestrates the flow of information between the
trunk and the stem processes during sampling. This approach allows us to uncover
intricate interactions and dependencies, and unlock new generative capabilities.
We provide extensive experiments to demonstrate strong performance gains of the
proposed method over contemporary baselines in the context of conditional graph
generation, underscoring the potential of Twigs in challenging generative tasks
such as inverse molecular design and molecular optimization. Code is available at
https://github.com/Aalto-QuML/Diffusion_twigs.

1 Introduction

Conditional graph generation is a fundamental problem in scientific domains such as de novo drug
design [21, 43, 74] and material design [39]. However, searching for new molecules with desired
physicochemical properties poses significant challenges to traditional brute-force methods due to
the vast combinatorial spaces [64]. With the advent of neural networks [44], deep generative models
have emerged as a powerful tool for learning informative conditional representations of molecules,
facilitating the development of in silico methods for chemical design [16, 31, 61, 73].

Score-based diffusion generative models (SGMs) and denoising probabilistic diffusion models
(DDPMs) [24, 67] have recently emerged as powerful techniques for training deep networks on graph-
structured data, with applications spanning molecular design [37, 53, 36, 81], molecular docking [6],
molecular dynamics simulations [78], protein folding [79], and backbone modeling [70]. Notably,
diffusion models exhibit superior capabilities for conditional graph generation, excelling in both
discrete [26, 75, 49] and continuous [3, 28, 45, 11] settings. The training of the mentioned conditional
diffusion models is achieved by two types of diffusion guidance algorithms: classifier-based guidance
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Figure 1: Overview of the proposed method (Twigs). We define two types of diffusion processes: (1)
multiple Stem processes (sϕi ), which unravel the interactions between graph structure and single properties, and
(2) the Trunk process, which orchestrates the combination of the graph structure score from sθ with the stem
process contributions from sϕi . During the forward process, the structure ys and the properties {yi}k co-evolve
toward noise. In each step of the reverse process, the structure is first denoised and subsequently used to denoise
the properties (indicated by the green-dashed line). Such de-noised properties are then utilized, in turn, to further
denoise the structure (red line), in a process that resembles a guidance loop.

[8], which involves training a separate property predictor model alongside the diffusion model;
and classifier-free guidance [23], which integrates scores from both unconditional and conditional
diffusion models. While these guidance techniques have been found to be effective, the algorithm
design is not tailored to encompass the intricate hierarchical or multi-resolution elements inherent in
conditional generation. Consequently, it is plausible that this inadequacy may contribute to suboptimal
representations, particularly notable in tasks such as conditional graph generation. The recent success
of hierarchical diffusion flows in various domains, such as modeling interactions between node and
edge features [37], multi-resolution modeling [25], decision-making [47], and conditional image
generation [4, 71] underscores the need to integrate hierarchical information beyond the capabilities
of classifier-based and classifier-free guidance.

We assert that conditional diffusion models for structured spaces, such as graphs, could be enhanced
with hierarchical conditional processes. Specifically, rather than treating heterogeneous structural
and label information uniformly within the hierarchy, we advocate for the co-evolution of multiple
processes with distinct roles (asymmetric). These roles encompass a primary process governing
the structural evolution alongside multiple secondary processes responsible for driving conditional
content. We aim to propose an alternative to existing conditional graph diffusion techniques (outlined
in Table 1) by bestowing the models with finer control over two key aspects: 1) the evolution of
structural graph components, including nodes and edges, and 2) the co-adaptation of the graph
structure in conjunction with one or more associated properties.

Towards this objective, we present a novel diffusion framework for conditional generation named
Twigs, drawing analogies from the trunk and offshoots of a tree. Concretely, we establish a central
trunk process governing a primary variable, which interacts with several stem processes, each associ-
ated with a secondary variable. In contrast with classifier-free and classifier-based methodologies, a
novel conditional mechanism, termed loop guidance, orchestrates information exchange between
the trunk and the stem processes (refer to Figure 1). Our methodology facilitates the acquisition of
flexible representations, capitalizing on the disentanglement of intricate interactions and dependen-
cies. We formalize our framework by drawing upon the theory of denoising score matching [67] and
leveraging tools derived from stochastic differential equations (SDEs) [1]. The effectiveness of Twigs
is substantiated through compelling empirical validation across various conventional constrained
generation tasks, utilizing both molecular and generic graph datasets.

1.1 Contributions

In summary, this paper makes the following key contributions:
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Table 1: Comparison of related methodologies. Twigs is the first method that enables a seamless
orchestration of multiple asymmetric property-oriented hierarchical diffusion processes via SDEs.

Method Conditional Asymmetric Multiple flows Continuous (SDEs)

GDSS [37] ✗ ✗ ✓ ✓
EEGSDE [3] ✓ ✗ ✗ ✓
MOOD [45] ✓ ✗ ✗ ✓
JODO [28] ✓ ✗ ✗ ✓
EDGE [5] ✗ ✗ ✓ ✗
GraphMaker [46] ✓ ✗ ✓ ✗
Nisonoff et al. [52] ✓ ✗ ✗ ✗
Gruver et al. [18] ✓ ✗ ✗ ✓
Klarner et al. [40] ✓ ✓ ✗ ✗

Twigs (ours) ✓ ✓ ✓ ✓

• (Conceptual and methodological) The introduction of a new score-based, end-to-end trainable,
non-autoregressive generative model Twigs designed for acquiring conditional representations.
Our approach enables precise guidance of multiple property-conditioned diffusion processes.

• (Technical) We present a robust mathematical framework, including a novel strategy called loop
guidance, that employs tools from Stochastic Differential Equations (SDEs) to derive both the
forward diffusion process and its corresponding reverse SDE for conditional generation. This
framework is designed to seamlessly integrate additional contexts as conditioning information.

• (Empirical) We showcase the versatility of the proposed diffusion mechanism (Twigs) through
extensive empirical evidence across various challenging conditional graph generation tasks, consis-
tently surpassing contemporary baselines.

2 Related works

In Table 1 we provide an overview of the similarities and differences between Twigs and related
methods. We refer the reader to Appendix E for additional related work.

Diffusion guidance is typically applied to regulate the diffusion process for conditional generation.
Previous approaches that perform class-conditional generation are divided into classifier-based [8],
and classifier-free guidance [23]. While some works model diffusion with multiple flows [5, 37, 46],
they treat nodes and edges in a symmetric way; i.e., they associate multiple flows for nodes and edges
that have equivalent contributions (in other words, these flows have the same roles). We instead
abstract graph properties as secondary processes that branch from, and interact with, the main process
that pertains to the graph structure. In addition, while other guidance methods are related [18, 40, 52],
they do not leverage multiple diffusion flows. To our knowledge, the proposed method is the first to
incorporate multiple diffusion flows in a hierarchical fashion for conditional generation. We formalize
in Table 2 how Twigs differs, mathematically, from classifier-free and classifier-based methods.

Conditional Diffusion for Graphs Recent advancements in generative modeling have prominently
featured score-based techniques (SGM), utilizing diffusion or stochastic differential equations (SDEs)
[19, 32, 35, 37, 48], including for graph generation [3, 5, 13, 14, 15, 18, 26, 40, 45, 46, 52, 72, 75, 82].
Guidance methods have been adopted in conditional molecule generation settings. The works
from Hoogeboom et al. [26], Huang et al. [28, 28], Xu et al. [82] are classifier-free approaches,
while Bao et al. [3], Vignac et al. [75], Lee et al. [45] focus on classifier-based methods. Diverging
from these approaches, we explicitly model the dynamic interaction between primary variables (e.g.,
graph structure) and dependent variables (e.g., graph properties) using dedicated diffusion processes
to achieve more expressive representations and improve performance for conditional generation.

3 Diffusion Twigs

Method overview We extend score-based techniques [67] for training conditional diffusion models
over graphs. Differently from current guidance methods, as summarised in Table 2, we leverage a
finer control over the structure and graph properties to diffuse multiple hierarchical processes, toward
achieving a more robust representation. Our method, Twigs, defines a trunk process over the primary
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Table 2: Twigs comparison to Classifier-based [8] and Classifier-free [23] guidance, applied for
conditional generation in Diffusion models. Here ys represents the graph structure, {yi}k represent
the k-properties of graph. The fϕ function is the classifier, ϵθ and sθ,ϕ are learnable score models.

Method Diffusion Scheme Approach

C
la

ss
.

ba
se

d dys = f(ys,t, t)dt+ g(t)dw ∇ys,t log p (ys,t, {yi}k) = ∇ys,t log p (ys,t) +∇ys,t log p ({yi}k | ys,t)
dys = [f(ys,t, t)− g2t∇ys,t log pt(ys,t, {yi}k)]dt+ gtdw̄ ≈ − 1√

1−ᾱt
ϵθ (ys,t) +∇ys,t log fϕ ({yi}k | ys,t)

C
la

ss
.

fr
ee dys = f(ys,t, t)dt+ g(t)dw ∇ys,t

log p ({yi}k | ys,t) = ∇ys,t
log p (ys,t | {yi}k)−∇ys,t

log p (ys,t)
dys = [f(ys,t, t)− g2t∇ys,t

log pt(ys,t, {yi}k)]dt+ gtdw̄ = − 1√
1−ᾱt

(ϵθ (ys,t, t, {yi}k)− ϵθ (ys,t, t))

Tw
ig

s dys = f(ys,t, t)dt+ g(t)dw, {dyi}k = f(ys,t,yi,t, t)dt+ g(t)dw ∇ys,t log pt(ys,t, {yi,t}k) = ∇ys,t log pt(ys,t) +
∑

i∇ys,t log pt(yi,t | ys,t)
dys = [f(ys,t, t)− g2t∇ys,t

log pt(ys,t, {yi,t}k)]dt+ gtdw̄ ∇ys,t
log pt(ys,t) ≈ sθ,t(ys,t), ∇ys,t

log pt(yi,t | ys,t) ≈ sϕ,t(ys,t,yi,t)
{dyi}k = [f(ys,t,yi,t, t)− g2t∇yi,t

log pt(ys,t,yi,t)]dt+ gtdw̄ ∇ys,t
log pt(ys,t, {yi,t}k) = sθ,t(ys,t) +

∑
i sϕ,t(ys,t,yi,t)

variable (graph structure) ys, and a stem process over each dependent variable yi ∈ R (e.g., graph
property). We achieve the desired flexibility with a variable ys that encompasses both node features
and the adjacency matrix as well as the coordinates. The details of the dimensions of ys are given in
Section B.1 for the 3D case, and in Section B.2 for the 2D case.

Forward process We define multiple forward processes within a hierarchy that co-evolves data
and properties into noise. The trunk forward process for the graph structure ys is defined as

dys = fs(ys,t, t)dt+ gs(t)dw (1)

where fs and gs are corresponding diffusion and drift functions, and dw is the Wiener noise. The
stem forward process over the k dependent variables y = {y1, . . . ,yk} is defined as

dy(t) =

dy1(t)
...

dyk(t)

 =

fp(y1,t,ys,t, t)dt+ gp(t)dw
...

fp(yk,t,ys,t, t)dt+ gp(t)dw

 (2)

Here, fp and gp denote the diffusion and drift functions, respectively, for the k stem processes.
Collectively, along with the trunk forward process, they constitute Twigs. These operations introduce
random Gaussian noise, iteratively, to the data toward a prior (typically Gaussian) distribution.

Reverse Process The Twigs reverse process starts from the prior distribution (Gaussian noise)
towards the data distribution. A key difference with Song et al. [67] is that here our variable yt

comprises both structure and properties, leading to the following modification of the overall diffusion
process:

dyt = [f(yt, t)− g2t∇yt log pt(yt)]dt+ gtdw̄ where yt = {ys,t, {yi,t}ki=1} . (3)

We derive Equation (3) in Section A.1. The joint distribution over the trunk and stem processes is
assumed to factorize as

pt(ys,t,y1,t, ...,yk,t) = pt(ys,t)
∏k

i=1 pt(yi,t | ys,t) . (4)

In turn, the score function simplifies as in Equation (5), leading to the decomposition in Equation (6).

∇yt
log pt(ys,t,y1,t, . . . ,yk,t) = ∇yt

log pt(ys,t) +
∑k

i=1 ∇yt
log pt(yi,t | ys,t) (5)

dyt = [f(yt, t)− g2t (∇yt
log pt(ys,t) +

∑k
i=1∇yt

log pt(yi,t | ys,t))]dt+ gtdw̄ (6)

Conditional modeling We expand our proposed approach to enable conditional generation with
an external context yC = {yc | c ∈ C}, where C ⊆ {1, . . . , k}. The context can be represented
as a scalar or vector, describing a particular value associated with a data-dependent variable. For
example, in case of molecules, it could represent one or more of the k properties such as the Synthetic
Accessibility (SA) score or the Quantitative Estimate of Drug likeness (QED). This extension modifies
the joint distribution for the score function in Equation (5).
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Reverse SDE under conditioning context

The reverse SDE for yt = {ys,t, {yi,t}k} give an external conditioning context yC is shown below
(details in Appendix A.2).

dyt=[f(yt, t)−g2t∇yt
log pt(yt,yC)]dt+ gtdw̄ (7)

We resort to the following factorization of the distribution, conditioned on the context yC :

pt(ys,t, {yi,t}k,yC) =
∏k

i pt(yi,t | ys,t,yC)pt(ys,t,yC)

As a result, the factorization of the score function∇yt log pt(ys,t, {yi,t}k,yC) amounts to

∇yt
log pt(ys,t,yC)+

∑k
i /∈ C ∇yt

log pt(yi,t | ys,t)+
∑C

c

∑k
i δi=c∇yt

log pt(yi,t | ys,t,yc) (8)

The above-factorized score function parameterizes our reverse diffusion process, thus offering a novel
approach to integrate external contextual information into conditional generation.

Training We propose to train Twigs by incorporating the factorization from Equation (8) within a
score-matching objective function [30, 67]. Algorithm 1 shows the training procedure to learn two
types of time-dependent score-based models: sθ,t, which approximates the trunk variable, and sϕi,t

which approximates the coupling between the stem variable and the trunk variable. The objective
function for optimizing the score networks sθ, sϕi

, is given as follows:

minθ,ϕi
Et {λyt

(t)Ey0
Eyt|y0

∥sθ,t(ys,t,yc)+
∑k

i sϕi,t(yi,t,ys,t,yc)−∇yt
log pt(yt,yC)∥22} (9)

where Ey0
= Eys,0,yi,0

and Eyt
= Eys,t,yi,t

. It is worth noting that the influence introduced by the
variable sϕi

provides the directions for the diffusion model to converge into distributions with the
desired properties. Such property-oriented knowledge operates in conjunction with the structural
information provided by sθ, resulting in a novel form of guidance that is orchestrated by a branching
diffusion process, named Loop guidance.

Algorithm 1 Training Twigs
Input: Dataset D, iterations niter, batch size B,
number of batches nB , K properties to consider
Initialize parameters sθ,t, {sϕi,t}Ki=1 for Score
Networks
for k = 1, . . . , niter do

for b = 1, . . . , nB do
t ∼ U(0, 1]
Db = {(ys,l, {yi,l}Ki=1)

B
l=1,yC} ∼ D

Lb ←− Eq. 9
end for
θ, {ϕi}Ki=i ←− optim( 1

nB

∑nB

b=1 Lb)
end for

Algorithm 2 Generating with Twigs

Input:Score-based models sθ,t, {sϕi,t}Ki=1,
Time step schedule {t}0t=T , Langevin MCMC
step size α, External context yC

ysT , {yi,T }Ki=1 ∼ N (0, I)
for t = T, . . . , 0 do
sθ,t ←− sθ,t(yst , {yi,t}Ki=1,yC)
{sϕi,t}Ki=1 ←− {sϕi,t(yst ,yi,t,yC)}Ki=1
yst ← yst +

α
2 sθ,t +

√
αzs; zs ∼ N (0, I)

yit ← yit +
α
2 sϕi,t +

√
αzi; zi ∼ N (0, I)

end for

Sampling Given a trained conditional Twigs model, our generative process begins by sampling an
external context or conditioning value yC , which can also be supplied externally. We then simulate
the reverse diffusion process, similar to the one described in Equation 8, but with a modified score
function to generate the data. The proposed algorithm for generating new data samples with Twigs is
given in Algorithm 2 and involves a loop of updates between processes: the stem score network sϕi

evolves the property yi, integrating information from the structure ys, and subsequently, the updated
property information from sϕi is integrated into the main process by the score network sθ.

4 Experiments

We conduct a set of comprehensive experiments to demonstrate that Twigs improves over con-
temporary conditional generation methods. Benchmarks include: molecule generation conditioned
over single (§ 4.1), and multiple (§ 4.2) properties on QM9, as well as molecule optimization on
ZINC250K (§ 4.3), and network-graph generation conditioned on desired properties (§ 4.4).
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Figure 2: First row: Samples by Twigs for 3D molecules conditioned on single properties on QM9.
Second row: KDE and KL divergence results between target and predicted properties.

Table 3: MAE↓ results on single target quantum property for the QM9 dataset.
Method Cv µ α ∆ϵ ϵHOMO ϵLUMO

EDM 1.065 (± 0.010) 1.123 (± 0.013) 2.78 (± 0.04) 671 (± 5) 371 (± 2) 601 (± 7)
GeoLDM 1.025 (± na) 1.108 (± na) 2.37 (± na) 587 (± na) 340 (± na) 522 (± na)
EEGSDE 0.941 (± 0.005) 0.777 (± 0.007) 2.50 (± 0.02) 487 (± 3) 302 (± 2) 447 (± 6)
EquiFM 1.033 (± na) 1.106 (± na) 2.41 (± na) 591 (± na) 337 (± na) 530(± na)
TEDMol 0.847 (± na) 0.840 (± na) 2.24 (± na) 443 (± na) 279 (± na) 412 (± na)
JODO 0.581 (± 0.001) 0.628 (± 0.003) 1.42 (± 0.01) 335 (± 3) 226 (± 1) 256 (± 1)

Twigs 0.559 (± 0.002) 0.627 (± 0.001) 1.36 (± 0.01) 323 (± 2) 225 (± 1) 244 (± 3)

Table 4: Novelty, atom & molecule stability for QM9 single property.

Novelty↑ Atom Stability↑ Mol Stability↑ Novelty↑ Atom Stability↑ Mol Stability↑
Cv µ

EDM 83.64(± 0.30) 98.25(± 0.02) 80.82(± 0.32) 83.93(± 0.11) 98.17(± 0.04) 80.25(± 0.40)

EEGSDE 83.53(± 0.18) 98.25(± 0.06) 80.83(± 0.33) 83.85(± 0.20) 98.18(± 0.02) 80.25(± 0.18)

TEDMol 83.82(± na) 98.27(± na) 80.83(± na) 84.88(± na) 98.22(± na) 80.31(± na)

JODO 91.21(± 0.22) 97.74(± 0.29) 91.75(± 0.11) 91.22(± 0.02) 99.02(± 0.02) 92.86(± 0.15)

Twigs 93.16(± 0.16) 99.14(± 0.04) 92.72(± 0.07) 92.90(± 0.08) 99.25(± 0.05) 93.91(± 0.03)

∆ε εHOMO

EDM 83.93(± 0.45) 98.30(± 0.04) 81.95(± 0.27) 84.35(± 0.31) 98.17(± 0.07) 79.61(± 0.32)

EEGSDE 84.09(± 0.27) 98.18(± 0.06) 80.99(± 0.29) 84.44(± 0.33) 98.19(± 0.03) 79.81(± 0.20)

TEDMol 84.92(± na) 98.19(± na) 79.82(± na) 84.58(± na) 98.22(± na) 80.97(± na)

JODO 91.02(± 0.19) 98.42(± 0.02) 93.32(± 0.04) 91.38(± 0.02) 98.19(± 0.38) 92.02(± 0.03)

Twigs 92.70(± 0.04) 99.31(± 0.01) 94.12(± 0.31) 93.02(± 0.21) 99.26(± 0.04) 94.11(± 0.26)

α εLUMO

EDM 84.56(± 0.47) 98.13(± 0.04) 79.33(± 0.30) 84.62(± 0.28) 98.26(± 0.04) 81.34(± 0.29)

EEGSDE 84.19(± 0.32) 98.26(± 0.03) 80.95(± 0.35) 84.83(± 0.30) 98.14(± 0.01) 80.00(± 0.21)

TEDMol 85.82(± na) 98.42(± na) 82.03(± na) 84.90(± na) 98.31(± na) 81.40(± na)

JODO 90.15(± 0.02) 98.74(± 0.05) 94.03(± 0.32) 90.78(± 0.42) 98.84(± 0.04) 94.02(± 0.03)

Twigs 92.88(± 0.13) 99.28(± 0.12) 94.12(± 0.02) 92.48(± 0.15) 99.29(± 0.17) 94.11(± 0.33)

4.1 Single Quantum properties on QM9

Setup. We evaluate the effectiveness of Twigs for generating molecules with a single desired
quantum property, sourced from the QM9 dataset [58], specifically, we consider Cv, µ, α, ∆ϵ,
ϵLUMO and ϵHOMO. To ensure consistency and comparability with the baselines, which include
JODO [28], EDM [26], EEGSDE [3], GeoLDM [82], TEDMol [49], EquiFM [68], we adhere to the
identical dataset preprocessing, training/test data partitions, and evaluation metrics outlined by Huang
et al. [28]. Regarding parameterization of Twigs, we follow the attention architecture defined in
Section B.1 with a single stem process.

Results. In Table 3, we report the Mean Absolute Error (MAE) results, and in Table 4, the Novelty,
Atom stability and Molecule stability. Our method outperforms all the evaluated baselines across
the specified properties. In Figure 2, the bottom row provides a Kernel Density Estimation (KDE)
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visualization which shows that Twigs achieves a more accurate distribution for the property values
when compared with JODO, while the top row shows some 3D molecule samples by our model.

Figure 3: Samples of multiple-property conditional molecules by Twigs (Cv and µ) for QM9.

Table 5: MAE (↓) for conditional generation on QM9 with multiple properties.
Cv µ ∆ϵ µ α µ

EDM 1.097(± 0.007) 1.156(± 0.011) 683(± 1) 1.130(± 0.007) 2.76(± 0.01) 1.158(± 0.002)

EEGSDE 0.981(± 0.008) 0.912(± 0.006) 563(± 3) 0.866(± 0.003) 2.61(± 0.01) 0.855(± 0.007)

TEDMol 0.645(± n/a) 0.836(± n/a) 489(± n/a) 0.843(± n/a) 2.27(± n/a) 0.809(± n/a)

JODO 0.634(± 0.002) 0.716(± 0.006) 350(± 4) 0.752(± 0.006) 1.52(± 0.01) 0.717(± 0.006)

Twigs 0.602(± 0.001) 0.708(± 0.002) 343(± 2) 0.740(± 0.003) 1.46(± 0.01) 0.712(± 0.002)

4.2 Multiple Quantum properties on QM9

Setup. This experiment evaluates the capability to combine multiple desired properties in the
generated molecule. Specifically we follow Huang et al. [29] and consider all possible combinations
of properties involving µ: (Cv, µ), (∆ϵ, µ), (α, µ). Since we model two properties, we test our Twigs
with two stem networks within the attention architecture described in Section B.1. We benchmark
against several contemporary baselines, including EDM [26], EEGSDE [3] and JODO [28].

Results. In Table 5, we present the Mean Absolute Error (MAE) results obtained from the property
predictors introduced by Huang et al. [28] for the various property pairs under consideration. The
superior performance of Twigs across all baselines reinforces the findings from the single property
experiment (Section 4.1), emphasizing the benefits of learning multiple hierarchical stem processes.

Figure 4: Molecules generated by Twigs from ZINC250k conditioned on fa7 (top), parp1 (bottom).

4.3 Molecule optimization on ZINC250K

Setup. The goal is to generate molecules from the ZINC250K dataset that exhibit optimal binding
affinity, drug-likeness, and synthesizability for the following five target proteins: parp1, fa7, 5ht1b,
braf, jak2. We adhere to the evaluation protocol established by Lee et al. [45], which involves
generating 3000 molecules and assessing them using two metrics that constrain the desired properties,
including docking score (DS), drug-likeness (QED), and synthetic accessibility (SA).

The first metric, Novel hit ratio (%), represents the fraction of unique hit molecules that have a
maximum Tanimoto similarity of less than 0.4 with the training molecules. Hit molecules are defined
as those meeting the criteria: DS < (the median DS of the known active molecules), QED > 0.5, and
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SA < 5. The second metric, Novel top 5% docking score, is the average DS of the top 5% unique
molecules that satisfy QED > 0.5 and SA < 5, with a maximum similarity of less than 0.4 to the
training molecules.

Baselines. We consider REINVENT [55]: a reinforcement learning (RL) model that utilizes a prior
sequence model, MORLD [33]: a RL model that uses QED and SA scores as intermediate rewards
and docking scores as final rewards, HierVAE [34]: a VAE-based model that utilizes hierarchical
molecular representation and active learning, GDSS [37]: a score-based diffusion model that evolves
nodes and edge information with a system of SDEs, MOOD [45]: a score-based diffusion model based
on GDSS that trains an additional property predictor to improve conditional generation. For MOOD
we consider the version without the out-of-distribution (OOD) control, to have a fair comparison
with our method. For Twigs we follow the GCN-based architecture described in Section B.2, with
multiple stem processes (one for each target protein).

Results. In Table 6 we report the results for top 5% docking scores. We observe that Twigs achieves
the highest score across all properties, excluding braf, where it achieves the second-best score after
MOOD. In Table 7 we report the results for Novel hit ratio. The outcomes confirm that our model is
improving the performance substantially over all the considered properties, except for braf, on which
Twigs is the second-best performing model after MOOD. In Figure 4, we provide some samples of
the molecules obtained by Twigs with the respective QED, SA, and docking score. Additionally, in
Table 13 we report the MAE values for generating molecules with a desired target protein property,
and in Table 14 we compare the inference cost of Twigs against MOOD.

Table 6: Novel top 5% docking score on ZINC250K. Best is boldfaced, second-best is in gray .

Model parp1 fa7 5ht1b braf jak2

REINVENT 8.702(± 0.523) 7.205(± 0.264) 8.770(± 0.316) 8.392(± 0.400) 8.165(± 0.277)

MORLD 7.532(± 0.260) 6.263(± 0.165) 7.869(± 0.650) 8.040(± 0.337) 7.816(± 0.133)

HierVAE 9.487(± 0.278) 6.812(± 0.274) 8.081(± 0.252) 8.978(± 0.525) 8.285(± 0.370)

GDSS 9.967(± 0.028) 7.775(± 0.039) 9.459(± 0.101) 9.224(± 0.068) 8.926(± 0.089)

MOOD 10.409(± 0.030) 7.947(± 0.034) 10.487(± 0.069) 10.421(± 0.050) 9.575(± 0.075)

Twigs 10.449(± 0.009) 8.182(± 0.012) 10.542(± 0.025) 10.343(± 0.024) 9.678(± 0.032)

Table 7: Novel hit ratio (↑) results on ZINC250K.

Model parp1 fa7 5ht1b braf jak2

REINVENT 0.480(± 0.344) 0.213(± 0.081) 2.453(± 0.561) 0.127(± 0.088) 0.613(± 0.167)

MORLD 0.047(± 0.050) 0.007(± 0.013) 0.880(± 0.735) 0.047(± 0.040) 0.227(± 0.118)

HierVAE 0.553(± 0.214) 0.007(± 0.013) 0.507(± 0.278) 0.207(± 0.220) 0.227(± 0.127)

GDSS 1.933(± 0.208) 0.368(± 0.103) 4.667(± 0.306) 0.167(± 0.134) 1.167(± 0.281)

MOOD 3.400(± 0.117) 0.433(± 0.063) 11.873(± 0.521) 2.207(± 0.165) 3.953(± 0.383)

Twigs 3.733(± 0.081) 0.900(± 0.012) 16.366(± 0.029) 1.933(± 0.023) 5.100(± 0.312)

4.4 Generation of Network graphs with desired properties

Setup. We follow the data processing delineated by Jo et al. [37] and provide results for the
Community-small [60] and Enzymes datasets [62]. To test the capabilities to generate conditional
graphs, we extract four properties via the NetworkX library [20], including density, clustering,
assortativity, and transitivity. Considering a graph G with n nodes and m edges, we have: (1) Density:
d = 2m

n(n−1) , (2) Clustering coefficient: the average C = 1
n

∑
v∈G cv . (3) Assortativity: measures the

similarity of connections in the graph with respect to the node degree. (4) Transitivity: the fraction of
all possible triangles present in G. Possible triangles are identified by the number of "triads" (two
edges with a shared vertex). The transitivity is T = 3#triangles

#triads .

Baselines. In terms of baselines, we first consider two versions of MOOD [45] (two OOD coefficients),
and we train the property predictors using the codes from the authors. Our second baseline is
GDSS [37], which we modify to be equipped with a classifier-free guidance scheme. We also consider
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Figure 5: Visualization of Community-small and Enzymes datasets. First and second rows: samples
generated by Twigs. Third and fourth rows: KDE plots and corresponding KL divergence values.

Table 8: MAE (↓) values on Community-small and Enzymes, conditioned on single properties.
Community Small Enzymes

Model Density Clustering Assortativity Transitivity Density Clustering Assortativity Transitivity

GDSS 2.95 12.1 19.6 11.4 8.04 2.53 1.98 2.55
GDSS-T 2.30 11.5 19.2 10.1 9.25 3.27 2.03 2.68
Digress 2.34 10.6 17.8 9.42 8.04 2.39 1.95 2.55
MOOD-1 2.35 11.1 18.8 10.5 7.94 2.34 1.83 2.12
MOOD-4 2.12 11.3 16.7 8.76 7.98 2.44 1.99 2.43

Twigs 2.07 9.67 15.2 8.35 7.35 2.23 1.72 2.03

the version of GDSS based on transformers, which leverages the graph-multi-head attention [2].
Finally, we consider Digress [75], which is a classifier-based guidance diffusion model based on
attention mechanisms. We parameterize our Twigs model with our GCN architecture described in
Section B.2, with a single stem process.

Results. Table 8 reports the MAE average of three runs, demonstrating that Twigs consistently
outperforms the considered baselines on all cases across the two datasets. MOOD is the second-best
performing model in the majority of the cases. We further strengthen the MAE results by providing
in Figure 5 (bottom) the KDE plots of the property distributions of the graph generated by Twigs and
MOOD. The Figure demonstrates that Twigs can achieve a higher fidelity to the data, which is also
confirmed by the lower KL divergence values. Figure 5 (top) depicts some random graph samples
generated by Twigs.

4.5 Ablation study on multiple properties

Setup. Assuming conditional independence among the properties α, ϵHOMO, ϵLUMO, ∆ϵ, µ, and
Cv given the molecular graph can simplify the modeling process. This assumption leverages the
fact that the molecular graph captures the essential structural dependencies, allowing us to treat
the properties as independent for computational efficiency and ease of interpretation, even if slight
interdependencies exist.

Results. Here we show that such modeling assumption can work practically. Table 9 reports the MAE
on molecular graphs for QM9 on three properties, showing that our method consistently achieves
lower error on all the properties. Table 10 shows that on generic graphs Twigs can achieve lower
MAE on all the considered cases, in the cases of two and three properties.

9



Table 9: MAE values over three properties for QM9.

Model α µ ∆ϵ

JODO 2.749 (± 0.03) 1.162 (± 0.04) 717 (± 5)
Twigs 2.544 (± 0.05) 1.094 (± 0.02) 640 (± 3)

Table 10: MAE results for two and three properties on community small.

Model Pair1 Pair2 Triplet
Density Clustering Density Assortativity Density Clustering Assortativity

GDSS 2.95 13.3 2.61 19.8 2.97 12.5 19.4
Digress 2.82 12.1 2.52 18.1 2.65 11.2 18.2
MOOD 2.43 12.0 2.40 17.2 2.53 11.4 17.3

Twigs 2.34 11.0 2.39 16.7 2.27 10.6 16.1

4.6 Training time

In Table 11 we study the impact of multiple diffusion flows on the community-small and Enzymes
datasets. Specifically, we report the average time for the overall training for Twigs with one and
three secondary diffusion flows. We observe that our models encounter a small overhead compared to
GDSS and Digress, however, we believe it is a good tradeoff because it achieves a lower MAE.

Table 11: Overall training time for 5,000 epochs (hours and minutes) for Twigs with different
secondary diffusion flows, GDSS, and Digress on the Community-small and Enzymes datasets.

Dataset Twigs p = 1 Twigs p = 3 GDSS Digress

Community-small 0h 22m 0h 24m 0h 19m 0h 20m
Enzymes 6h 45m 6h 59m 6h 42m 6h 43m

5 Conclusion, Broader Implications, and Limitations

We introduced a novel approach to model conditional information within generative models tailored
for graph data. Twigs incorporates the novel mechanism of loop guidance to control the overall
generative process by first bifurcating the diffusion flow into multiple stem processes and then
re-integrating them into the trunk process, resembling a loop. Our experimental results showcase
the performance gains of Twigs when compared to current state-of-the-art baselines across various
conditional graph generation tasks.

Conditional generation is fast emerging as one of the most exciting avenues within machine learning
and would benefit from techniques beyond classifier-based and classifier-free schemes, making our
method applicable to settings beyond this work. Indeed, while the current work has focused on graph
settings, Twigs might find use in other domains (e.g., image, text, and audio). However, whether
Twigs is effective in such settings needs to be investigated in future works.

Training multiple properties (stem processes) might require training additional parameters, incurring
additional computation and training time. Our ablation study on training time due to multiple
processes (Section 4.6) suggests that Twigs could provide a good tradeoff (lower MAE compared to
some prominent existing methods at the expense of small additional computational overhead).

Finally, assuming factorization of the distribution over stem processes conditioned on the trunk
process might not always be realistic. Our experiments in Section 4.5 suggest that Twigs might still
be able to achieve a strong performance when considering multiple properties. In case some prior
knowledge is available about some properties that violate this assumption, we could, in principle,
adapt Twigs by grouping them into a single stem process while factorizing with the remaining ones.
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A Proofs

A.1 Derivation of the reverse SDE

For a Stochastic Differential Equation (SDE) of the form,

dx = f(xt, t)dt+ g(xt, t)dw (10)

where f(·) and g(·) are diffusion, drift function and dw is the weiner noise. The evolution of the
distribution of xt is governed by the Kolmogorov Forward Equation (KFE) as,

∂tp (xt) = −∂xt
[f (xt) p (xt)] +

1

2
∂2
xt

[
g2 (xt) p (xt)

]
(11)

Kolmogrov Forward/Backward Equation (KFE/KBE). Essentially KFE describes the evolution of
a probability distribution p(xt) forward in time. The reverse-time SDE can be derived by solving the
Kolmogorov Backward Equation (K.B.E) as derived in Anderson [1]. It can be defined for t1 ≥ t0 as,

−∂tp (xt1 | xt0) = f (xt0) ∂xt0
p (xt1 | xt0) +

1

2
g2 (xt0) ∂

2
xt0

p (xt1 | xt0) (12)

where xt0 and xt1 are distributions at the respective time steps. Specifically, it models how the
distribution dynamics at a later point t1 in time changes as we change t0 at an earlier time.

In our case, we consider the diffusion over structure ys and properties {y1, . . . ,yk}. The KFE of the
system y = {ys,y1, . . . ,yk} is given by,

∂tp (yt) = −∂yt [f (yt) p (yt)] +
1

2
∂2
yt

[
g2 (yt) p (yt)

]
(13)

Independence Factorization. We can factorize p (yt) based on our assumption that the properties
{y1,t, . . . ,yk,t} are independent conditioned on the structure ys,t as

p(yt) = p(ys,t,y1,t, . . . ,yk,t)

= p(ys,t)p(y1,t, . . . ,yk,t | ys,t)

= p(ys,t)

k∏
i

p(yi,t | ys,t) (14)

Leveraging this factorization, we can define a system of SDEs with KFEs for each variable, leading
us to the SDE system defined in Eq. 1 and Eq. 2.

Reverse SDE: In the reverse case, we aim to denoise the full vector y = {ys,y1, . . . ,yk} where
ys denotes the diffusion over structure and {y1, . . . ,yk} over the k properties via reverse SDE.
Expressing in the form of Eq. 12, we note that for t1 ≥ t0,

−∂tp (yt1 | yt0) = f (yt0) ∂yt0
p (yt1 | yt0) +

1

2
g2 (yt0) ∂

2
yt0

p (yt1 | yt0) (15)
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Anderson [1] defines a joint distribution over the time-ordered variables yt1 and yt0 to derive the
reverse SDE. We utilize their analysis and define a joint distribution

p (yt1 ,yt0) := p (ys,t1 ,y1,t1 , ...,yk,t1 ,ys,t0 ,y1,t0 , ...,yk,t0)

= p (ys,t1 ,y1,t1 , ...,yk,t1 | ys,t0 ,y1,t0 , ...,yk,t0) p(ys,t0 ,y1,t0 , . . . ,yk,t0) (16)
We denote p(ys,t0 ,y1,t0 , . . . ,yk,t0) by p(yt0), and note that it can be decomposed similarly as in
Eq. 14. Taking the time derivative of Eq. 16, we get

−∂tp (yt1 ,yt0) = −∂tp (ys,t1 ,y1,t1 , ...,yk,t1 | ys,t0 ,y1,t0 , ...,yk,t0) p(yt0)

− ∂tp(yt0)p (ys,t1 ,y1,t1 , ...,yk,t1 | ys,t0 ,y1,t0 , ...,yk,t0) (17)

Comparison with KFE/KBE. We observe that ∂tp (ys,t1 ,y1,t1 , . . . ,yk,t1 | ys,t0 ,y1,t0 , . . . ,yk,t0)
corresponds to the KBE in Eq. 15 and ∂tp(yt0) to the KFE in Eq. 13. Denoting
{ys,t1 ,y1,t1 , . . . ,ykt1} by yt1 , we immediately get

− ∂tp (yt1 | yt0) p(yt0)− ∂tp(yt0)p (yt1 | yt0)

=

(
f (yt0) ∂yt0

p (yt1 | yt0) +
1

2
g2 (yt0) ∂

2
yt0

p (yt1 | yt0)

)
p(yt0)

+ p (yt1 | yt0)

(
∂yt0

[f (yt0) p (yt0)]−
1

2
∂2
yt0

[
g2 (yt0) p (yt0)

]) (18)

The derivatives can be handled, by following standard differentiation rules as,

∂yt0
p (yt1 | yt0) = ∂yt0

[
p (yt1 ,yt0)

p (yt0)

]
=

∂yt0
p (yt1 ,yt0)

p (yt0)
−

p (yt1 ,yt0) ∂yt0
p (yt0)

p2 (yt0)

(19)

Evaluating the derivative of the products in the forward Kolmogorov equation and substituting the
derivatives accordingly we obtain,

−∂tp (yt1 ,yt0) = ∂yt0
[f (yt0) p (yt0 ,yt1)] +

1

2
g2 (yt0) ∂

2
yt0

p (yt1 | yt0) p(yt0)

− 1

2
p (yt1 | yt0) ∂

2
yt0

[
g2 (yt0) p(yt0)

] (20)

Matching the terms of the second-order derivatives with the expansion of the derivative and doing
some algebraic manipulations, we obtain

−∂tp (yt1 ,yt0) = ∂yt0
[f (yt0) p (yt0 ,yt1)] +

1

2
∂2
yt0

[
p (yt1 ,yt0) g

2 (yt0)
]

− ∂yt0

[
p (yt1 | yt0) ∂yt0

[
g2 (yt0) p (yt0)

]]
,

(21)

which can be written as

−∂tp (yt1 ,yt0) =− ∂yt0

[
p (yt1 ,yt0)

(
−f (yt0) +

1

p (yt0)
∂yt0

(
g2 (yt0) p (yt0)

))]
+ (22)

1

2
∂2
yt0

[
p (yt1 ,yt0) g

2 (yt0)
]

(23)

Comparison with KFE. The above result is in the form of a Kolmogorov forward equation with the
joint probability distribution p (yt1 ,yt0). The time-ordering is t1 > t0 and the term −∂tp (yt1 ,yt0)
describes the change of probability distribution as we move backward in time. We can marginalize
over t1, using the Leibniz rule, to obtain

−∂tp (yt0) = −∂yt0

[
p (yt0)

(
−f (yt0) +

1

p (yt0)
∂yt0

(
g2 (yt0) p (yt0)

))]
+

1

2
∂2
yt0

[
p (yt0) g

2 (yt0)
]

(24)
This finally gives a stochastic differential equation analogous to the Fokker-Planck/forward Kol-
mogorov equation that can be solved backward in time:

dyt0 =

(
−f(yt0 , t) +

1

p (yt0)
∂yt0

(
g2 (yt0) p (yt0)

))
dt+ g (yt0) dw (25)

We keep g2 (yt0) independent of yt0 . Applying the log-derivative trick, the SDE simplifies to
dyt0 = (f(yt0 , t)− g2t0∇yt0

log p(yt0))dt+ gt0dw (26)
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A.2 Conditional score factorization

We extend our method to incorporate an external context or conditional information for conditional
generation, similar to classifier-based [8] and classifier-free [23] guidance. Following similar notation,
the reverse SDE [67], given an external context yC can be written as

dyt = [f(yt, t)− g2t∇yt
log pt(yt,yC)]dt+ gtdw̄ (27)

Here yt = {ys,t,y1,t, . . . ,yk,t}, and yC = {yc | c ∈ C} is an external context or conditioning
variable. This external context can be a scalar or vector describing a property value of the primary
variable like QED or plogp in the case of molecules or image labels in the case of images. The
∇yt log pt(yt,yC) term pertains to the score function which guides the process (see table 2 for com-
parison with both classifier-based and classifier-free guidance). Under our condition independence
assumption, the score function factorizes as

pt(ys,t,y1,t, . . . ,yk,t,yC) =

k∏
i

pt(yi,t | ys,t,yc)pt(ys,t,yC) (28)

∇yt
log pt(ys,t,y1,t, . . . ,yk,t,yC) = ∇yt

log pt(ys,t,yC) +

k∑
i /∈ C

∇yt
log pt(yi,t | ys,t)

+

C∑
c

k∑
i

δi=c∇yt
log pt(yi,t | ys,t,yc)

(29)

B Parameterizations

Here we describe two instances of Twigs based on architecture choices: Attention networks, and
graph convolution networks (GCNs). Twigs with attention is used in 4.1 and 4.2, while Twigs with
GCNs is used in 4.3 and 4.4.

B.1 Twigs with graph attention

We denote the variable ys as a 3D graph G = (A,x,h), with node coordinates x = (x1, . . . ,xN ) ∈
RN×3, node features h = (h1, . . . ,hN ) ∈ RN×d1, and edge information A ∈ RN×N×d2. The
variable C ∈ R denotes the conditional information, which is obtained by adding the noise level
log(α2

t /σ
2
t ), the perturbed property yi ∼ N (0, I) ∈ R, and the fixed property yC ∈ R. The context

C is combined with ys by multilayer perceptions (MLP), after projecting (h,A, x) respectively into
H,E,P:

AdaLN = (1+MLP(C))·LN(H)+MLP(C) (30)

Ml = MHA(AdaLN(H,C),AdaLN(E,C),P)

where MHA is the multi-head attention, and AdaLN is Adaptive LayerNorm (LN) function. Subse-
quently, we leverage the Scale function Scale(h,C) = MLP(C) · h, and the Feed Forward Network
(FFN) to obtain the Diffusion Graph Transformer (DGT) block, as defined in [28], which is described
by Eq (31)(32). DGT first computes the intermediate representations for the l-th layer as:

Ml = MHA(AdaLN(Hl,C),AdaLN(El,C),Pl) (31)

Ĥ = Scale(Ml,C) +Hl

Ê = Scale(Ml
i +Ml

j ,C) +El

then computes the l + 1 layer as:

El+1=Scale(FFN(AdaLN(Scale(Ê, C)), C)+Ê (32)

Hl+1 = Scale(FFN(AdaLN(Ĥ,C)),C) + Ĥ

Pl+1
i =

∑
i ̸=j

Pl
i−Pl

j

||Pl
i−Pl

j ||2
tanh(MLP(El+1

i,j ))
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The Twigs trunk process sθ is parameterized as:

sθ = DGT(ys,yi,yC) +
∑

i PDGTi(ys,yi,yC) (33)

where PDGTi resembles the stem process networks sϕi
, which is obtained by pooling to a one-

dimensional variable by an MLP operation, over the output of the DGT block. To optimize Eq (9),
DGT minimizes the denoising score matching objective from [28] for node, edge and position
information (h,A, x), while PDGTi for the perturbed property yi.

B.2 Twigs with graph convolutions

In the case of 2D graphs with N nodes we consider the variable ys = (X,A) ∈ RN×F × RN×N ,
where F is the dimension of the node features, X ∈ RN×F are node features, A ∈ RN×N is
weighted adjacency matrix. We define the perturbed property yi ∈ R and the (fixed) property
yC ∈ R. The stem process network sϕi is given as:

sϕi
=MLPi(GNN(Pi,A)); Pi=(X∥vi,∥vC) (34)

where vi and vC are vectors obtained by repeating N times the perturbed property yi and the fixed
property yC respectively, and concatenating them into the node features matrix X . The Twigs trunk
process sθ is obtained by combining the contributions from the properties yi derived by the stem
processes sϕi and the structure ys, as follows:

sθ = sθX (X,A,yC) +
∑

i sϕi
(X,yi,yC) (35)

where sθX is a conditional node feature score network: sθX = MLP(GNN(X ∥ yC ,A)). Finally,
following [37], A is co-evolved together with the node features, by the adjacency score model sAθ

sθA = MLP
([
{GMH (Hi,A

p
t )}

K,P
i=0,p=1

])
(36)

where GMH is graph multi-head attention [2], which employs higher-order adjacency matrices Ap
t ,

and K denotes the number of GMH layers. The optimization for the Twigs objective function (9), is
obtained by minimizing the denoising score matching for A,X,Pi.

The GMH block employs higher-order adjacency matrices Ap
t to represent the long-range dependen-

cies and is provided as: sθA(Gt) = MLP
([
{GMH (Hi,A

p
t )}

K,P
i=0,p=1

])
.

C Additional experimental results

C.1 QM9 dataset

Further details for generation conditioned on quantum properties from Section 4.1.

Molecular quality. Additional results for molecular stability in 2D and Fréchet ChemNet Distance
(FCD) for 2D and 3D are given in Table 12.

Table 12: Molecule quality results.

Property Mol-S-2D ↑ FCD-2D ↓ FCD-3D ↓
Cv 98.88 0.107 0.871
µ 98.93 0.125 0.842
α 98.71 0.106 0.867
∆ϵ 98.82 0.105 0.787
ϵHOMO 98.95 0.111 0.827
ϵLUMO 98.52 0.117 0.846

C.2 ZINC250K dataset

Conditional generation. The evaluation is performed by measuring the MAE of the pre-trained
predictors released from [45], which given a molecule Gt are trained to predict

Obj = D̂S(Gt)× QED(Gt)× ŜA(Gt) (37)
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where D̂S is the normalized docking score (DS) of the considered target protein, QED is the drug-
likeness, and ŜA is the normalized synthetic accessibility (SA).

In terms of baselines, we consider the MOOD model [45], which leverages a classifier-based guidance
scheme, and we also implement a diffusion guidance version of GDSS [37] based on the classifier-free
scheme. Our Twigs method is parameterized by the architecture described in B.2, with a single stem
process. The models are conditioned on the function in Equation (37).

Table 13: MAE for ZINC250K conditioned on single properties.

parp1 fa7 5ht1b braf jak2

GDSS 5.56 4.76 5.78 5.73 5.98
MOOD ood=0.04 5.42 4.33 5.52 5.37 5.10
MOOD ood=0.01 5.41 4.33 5.52 5.36 5.09

Twigs 5.38 4.30 5.43 5.28 5.01

Results. In Table 13, we report the mean MAE values over multiple runs computed from the generated
molecules using the pre-trained classifiers from [45]. We can observe that the Twigs consistently
achieves a lower error, demonstrating an improved control over generating molecules with the desired
target proteins.

Runtime. We have incorporated the runtime for molecule generation at inference time for a large-
scale dataset (ZINC250K) as for Section 4.3, in Table 14. A comparison with MOOD [45] indicates
that our model incurs a certain overhead, as anticipated. However, it demonstrates improved alignment
when generating conditional molecules.

Table 14: Runtime for inference on molecule generation.

model Seconds per molecule

Twigs 0.378
MOOD 0.267

D Experimental details

D.1 Computational resources

All experiments are performed with GPUs, Nvidia A100 or v100.

D.2 Models details

We follow the data splits from Huang et al. [28] for 4.1, 4.2, the ones from Lee et al. [45] for 4.3, and
the data splits from Jo et al. [37] for 4.4. We use Adam optimizers on all experiments.

For Sections 4.1 and 4.2 we follow the same hyperparameters from Huang et al. [28]. For Section 4.3
we follow the hyperparameters from Lee et al. [45], for the MOOD baseline, we explore OOD
coefficients between 0.01 and 0.09. For Section 4.4 we follow the hyperparameters from Jo et al.
[37].

E Additional Related Works

This section extends the discussion presented in Section 2 by exploring additional related works in
the field. In Table 15 we summarise related methods including score-sdes, hierarchical models (not
necessarily conditional), and hierarchical conditional models.

Conditional molecular diffusion. Guidance techniques have also been adopted in conditional
molecule generation settings: in the context of classifier-free approaches, Hoogeboom et al. [26]
proposes an equivariant approach based on DDPM for 3D molecules; Huang et al. [28] explores
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attention mechanisms within SGM models; and Xu et al. [82] investigates DDPMs in latent space
settings.

In terms of classifier-based guidance, Bao et al. [3] incorporate energy guidance into a diffusion
model by leveraging a stochastic differential equation; Vignac et al. [75] provide a DDPM coupled
with a classifier over quantum molecular properties; and Lee et al. [45] operate over a pre-trained
SGM and train an additional predictor for fine-tuning the desired protein target properties.

Guidance methods. Recent works utilize multiple diffusion processes: cascaded diffusion [25],
provides a flow for each resolution, and GDSS [37] has a joint system of diffusion processes one for
nodes and the other for edge features, but it does not cover mechanisms for conditional generation.
Tseng et al. [71] define a hierarchy of branching points within a single diffusion flow.

Other Diffusion methods for Graphs. Other works related to ours focus on hierarchical diffusion
processes [7], diffusion applied to protein backbones [69], geometry-based models [59, 82], and
autoregressive models [41]. In the realm of stochastic differential equation (SDE)-based approaches,
the literature includes bridge methods [38], permutation invariance [27], torsional modeling [36], and
docking [6]. Additionally, [63] introduces the ConfGF approach, estimating gradient fields of atomic
coordinates, while [80] proposes a method steering the training of diffusion-based generative models
using physical and statistical prior information.

Autoencoder-Based graph models. This category includes works employing autoencoders, such as
retrieval-based models [77, 12], scaffold modeling [50], link design [29], and coarse-grain model-
ing [76]. Notably, [54] proposes a reaction-embedded and structure-conditioned variational autoen-
coder, while [42] defines the concept of principal subgraphs, relevant to informative patterns within
molecules.

Conditional Diffusion. In the realm of diffusion generative models, several noteworthy approaches
have been developed to enhance their performance and versatility. Du et al. [10] introduce an
energy-based parameterization of diffusion models, allowing the integration of novel compositional
operators and Metropolis-corrected samplers. Building on this, He et al. [22] contribute a training-free
conditional generation framework, leveraging pretrained diffusion models focusing on the manifold
hypothesis to refine guided diffusion steps and introduce a shortcut algorithm. Meanwhile, Meng
et al. [51] employ a stochastic differential equation (SDE) in synthesizing realistic images, iterating
through denoising steps guided by a pretrained diffusion model.

In a different vein, Song et al. [66] propose guiding denoising diffusion models with general differen-
tiable loss functions in a plug-and-play manner, facilitating controllable generation without additional
training. Addressing the challenge of inferring high-dimensional data within the context of diffusion
models, Graikos et al. [17] present a model consisting of a prior and an auxiliary differentiable
constraint. Dinh et al. [9] tackle diversity and adversarial effects in classifier guidance for diffusion
generative models by allowing relevant classes’ gradients to contribute to shared information con-
struction during noisy early sampling steps. Furthermore, Song et al. [65] put forth a method for
estimating conditional scores without additional training. Lastly, Ouyang et al. [56] propose the
Contrastive-Guided Diffusion Process (Contrastive-DP), integrating contrastive loss to guide the
diffusion model in data generation. These diverse contributions collectively advance the field by
addressing various challenges and expanding the capabilities of diffusion generative models.
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Table 15: Comparison with related works.

Method Score-based SDE Hierarchical modeling Hierarchical conditional diffusion

EDM [26] ✗ ✗ ✗
EEGSDE [3] ✓ ✗ ✗
Digress [75] ✗ ✗ ✗
HierVAE [34] ✗ ✓ ✗
GraphGuide [72] ✗ ✓ ✗
GeoLDM [82] ✗ ✗ ✗
HierGraph [57] ✗ ✓ ✗
JODO [28] ✓ ✗ ✗
Twigs (this work) ✓ ✓ ✓
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the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
The implementation details are in appendix to run the experiments. The used datasets are
public and can be accessed with the reference paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Described in D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: We report mean and standard deviation in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Described in D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Provided in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Does not apply for our paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The resources that we used are cited, the source code we used is released on
open licenses.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve Crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve IRB.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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