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ABSTRACT

Several generative models with elaborate training and sampling procedures have been proposed
recently to accelerate structure-based drug design (SBDD); however, perplexingly, their empirical
performance turns out to be suboptimal. We seek to better understand this phenomenon from both
theoretical and empirical perspectives. Since most of these models apply graph neural networks
(GNNs), one may suspect that they inherit the representational limitations of GNNs. We analyze
this aspect, establishing the first such results for protein-ligand complexes. A plausible counterview
may attribute the underperformance of these models to their excessive parameterizations, inducing
expressivity at the expense of generalization. We also investigate this possibility with a simple metric-
aware approach that learns an economical surrogate for affinity to infer an unlabelled molecular
graph and optimizes for labels conditioned on this graph and molecular properties. The resulting
model achieves state-of-the-art results using 100x fewer trainable parameters and affords up to 1000x
speedup. Collectively, our findings underscore the need to reassess and redirect the existing paradigm
and efforts for SBDD.

1 Introduction

Identifying new molecules or ligands that bind well to a protein target and have desired properties is a key challenge of
Structure-based drug design (SBDD). Since experimental determination of binding is expensive and time-consuming,
deep generative models offer hope to accelerate SBDD by rapidly suggesting good candidate molecules from a learned
conditional distribution given the target protein, using experimental or in silico binding observations [Vamathevan et al.,
2019, Bilodeau et al., 2022]. Several approaches have been proposed for this purpose, including autoregressive models
[Peng et al., 2022, Luo et al., 2021a], variational autoencoders [Ragoza et al., 2022], reinforcement learning [Li et al.,
2021], and diffusion models [Schneuing et al., 2022, Guan et al., 2023a,b, Le et al., 2024].

Despite a surge in interest from the machine learning community, these methods are observed to underperform
empirically in terms of the docking scores, i.e., the estimated binding affinities of the candidates they generate. These
suboptimal findings are particularly surprising since many of the aforesaid methods jointly optimize for atom types and
3D coordinates (often using GNN-based architectures for encoding), with intricate training and sampling procedures.
Since the success of SBDD hinges on identifying candidates that dock well [Cieplinski et al., 2023], understanding this
intriguing phenomenon holds key to utilizing the promise of generative modeling in SBDD.

We take an initial but important step in this pursuit. Namely, we introduce and develop two contrasting hypotheses that
shed light on different aspects of the problem. First, we investigate, theoretically, the possibility that the shortcomings of
message-passing GNNs [Scarselli et al., 2009, Joshi et al., 2023], e.g., due to their inability to compute graph properties
[Garg et al., 2020], might propagate to the protein-ligand complexes, yielding insufficient representations. It turns out
that we can expose the limits on the expressivity of GNNs to distinguish ligands conditioned on the same protein target.
To our knowledge, these are the first such results in conditional drug discovery contexts, motivating the design and
analysis of more effective models that can mitigate the representational limitations.
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Summary of our contributions

Theoretical limits of GNNs in SBDD (Section 3):
GNNs limits extend to SBDD multi-body setting Proposition 3.2
Real-world complexes differ in binding affinity but look identical to GNNs Appendix L

New model: SimpleSBDD (Section 4):
Decomposition into unlabeled 2D molecular graph and atom labels Section 4.1
Represent unlabelled graph with features unlearnable by GNNs Section 4.2
Optimization of estimated binding built into model training Section 4.2
Up to 1000x faster and 100x fewer parameters than baselines

Experiments (Section 5):
Significantly higher estimated binding affinity than generative models Section 5.1
Better tradeoff between estimated binding affinity and other
molecular properties than optimization-based methods Section 5.2
Drug repurposing: scoring 9000 molecules/second on CPU Section 5.2

Figure 1: Our contributions are theoretical, methodological and empirical.

Second, we also study and analyze, empirically, a counterview that the generative models for SBDD might already be
getting too sophisticated, owing, e.g., to their excessive parameterizations, and simpler methods may provide strong
baselines. Some preliminary evidence on the efficacy of simple baselines for the unconditional molecule generation
setting, but not SBDD, has emerged recently [Tripp and Hernández-Lobato, 2023] stemming from similar concerns.

Concretely, we identify a key issue that has eluded attention heretofore; namely, that the existing methods predominantly
focus on obtaining rich representations for drug properties such as QED with bulky models, while being oblivious to
binding affinity as they seek to match the observed ligand distribution (which often includes molecules with suboptimal
affinities). We address these issues with a novel simple two-phase generative method SimpleSBDD that draws inspiration
from the success of performance-aware methods in other domains [Joachims, 2005], and optimizes for both the metrics
of interest, i.e. molecular properties and estimated binding affinity.

Specifically, we first learn an economical affinity surrogate to infer an unlabelled molecular graph, and then optimize its
atom labels and coordinates for other properties. Albeit segregating optimization over structure from labels loses some
information, we observe that our approach already achieves state of the art in SBDD with up to 1000x speed up and
100x fewer parameters than prior methods. Importantly, we represent the unlabelled molecular graphs with features that
are unlearnable by GNNs.

Note that such massive reduction in computation and model size bears significant potential benefits for the docking
software in particular, and the overall SBDD pipeline in general. Streamlining the generation of hits, i.e., promising
initial candidates that bind well to a specified protein target would afford re-channeling of limited resources for lead
optimization as well as more stringent and precise validation stages than docking, namely, design and analysis of
simulations for molecular dynamics as well as wet lab experiments.

A key contribution of this work is topical: we draw attention to the disparity between the promise and the observed
empirical performance of generative models for SBDD, outlining expressivity concerns. We also summarize our
methodological, empirical and theoretical contributions in Figure 1.

2 Preliminaries and related work

Deep (Geometric) Learning for Drug Design. Deep learning has enabled progress on various facets of drug design
across molecular generation [Jin et al., 2018, Zang and Wang, 2020, Verma et al., 2022, Shi et al., 2020, Luo et al.,
2021b, Hoogeboom et al., 2022, Igashov et al., 2022], molecular optimization [Jin et al., 2019] and drug repurposing
[Pushpakom et al., 2019]. It has also accelerated advancements in protein folding and design [Jumper et al., 2021, Wu
et al., 2022b, Ahdritz et al., 2022, Verkuil et al., 2022, Hie et al., 2022, Shi et al., 2023, Watson et al., 2022, Ingraham
et al., 2022, Wu et al., 2022a, Verma et al., 2023] and docking [Stärk et al., 2022b, Ganea et al., 2022, Corso et al.,
2023]. We refer the reader to the surveys by Chen et al. [2018] and Pandey et al. [2022].
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Figure 2: Some ligands cannot be distinguished by GNNs even with additional protein context Left: Construction
for Lemma 3.1; Two non-isomorphic graphs differing in all properties stated in Lemma 3.1, but for which LU-GNNs
produce identical embeddings. Right: Complex graphs constructed by joining the ligand graphs with the same protein
graph remain identical whenever ligand graphs cannot be differentiated.

Graph Neural Networks (GNNs) have emerged as a workhorse for modeling data, such as molecules, that can be
represented as graphs [Scarselli et al., 2009, Kipf and Welling, 2017, Hamilton et al., 2017, Veličković et al., 2018].
They can be extended to encode important symmetries in geometric graphs [Satorras et al., 2021], so have found success
across diverse tasks in the drug design pipeline including docking [Corso et al., 2023] and molecular property prediction
[Stärk et al., 2022a].

However, GNNs have known representational limits [Xu et al., 2019, Morris et al., 2019, Maron et al., 2019, Garg
et al., 2020, Wang and Zhang, 2022, Puny et al., 2023a, Joshi et al., 2023]. There have been many methods proposed
for improving them [Bouritsas et al., 2022, Vignac et al., 2020, Puny et al., 2023b] albeit potentially at the expense of
generalization [Karczewski et al., 2024].

Molecular properties The goal of SBDD is to generate drug candidates with high binding affinity to a target protein,
while controlling for other properties. We list below common molecular properties, calculated in practice using the
RDKit software [Landrum et al., 2020], that are relevant to drug design [Bilodeau et al., 2022, Peng et al., 2022]: 1)
Binding affinity – the strength of the connection between the ligand and the protein. A common surrogate for affinity is
the Vina score [Alhossary et al., 2015]; 2) LogP – logarithm of the partition coefficient, which is a solubility indicator;
3) QED – quantitative estimate of drug-likeness, a mixture of properties correlated with drugs; 4) SA – Synthetic
accessibility, an estimate of how easy it would be to synthesize the molecule; and 5) Lipinski’s Rule of Five – A
heuristic about whether a molecule would be an active oral drug.

Setting. We view proteins as labelled graphs: each pocket G = (V,E) consists of nodes V = {v1, . . . , vN} with vi
representing atoms, and edges E ⊆ V ×V . Each node v = (a, s) is associated with an atom type a ∈ A = {C, N, O, . . .}
and 3D coordinates s ∈ R3, and each edge e ∈ E with a bond type from {1, 2, 3}. We represent the molecule M
analogously. We include superscripts GP and GM to distinguish between protein and molecule graphs. We also
distinguish between a labelled molecular graph GM and unlabelled one UM . The unlabelled graph contains information
about the number of nodes and edges between them, but no information about atom types or 3D coordinates.

The problem of SBDD can be posed as modeling the conditional distribution p(GM |GP ). The challenge is to generate
candidate ligands with high binding affinity to a target protein. We begin our analysis with a theoretical examination of
expressivity limits of GNNs in the SBDD context.

3 Representation limits of GNNs for SBDD

The generative models for SBDD are quickly increasing in size (see Table 1) aiming to expand their expressivity.
However, we bring attention to the representational issues concerning large models. Specifically, we show that there
exist molecular graphs that cannot be distinguished by a large class of GNN models regardless of their depth, even in
the additional protein context. Consequently, certain graph properties, including the number of cycles, diameter, and
sizes of cycles, cannot be learned by message-passing graph neural networks (MPGNNs). Interestingly, as we will
demonstrate in Section 4, these features are very useful in predicting binding affinity.

It is known that there exist graphs representing distinct molecular structures that cannot be distinguished using message-
passing graph neural networks (MPGNNs) [Sato, 2020, Garg et al., 2020]. Following the notation of Garg et al. [2020],
we consider Locally Unordered GNNs (LU-GNNs), which we summarize as follows. The updated embedding h

(l)
v of
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node v at layer l is defined as

m(l−1)
u→v = ϕ(h(l−1)

u , euv); h̃
(l−1)
v = AGG{m(l−1)

u→v | u ∈ N(v)};h(l)
v = COMBINE{h(l−1)

v , h̃(l−1)
v },

where N(v) denotes the set of neighbours of v, euv are edge features and ϕ is any function. It is known that there exist
non-isomorphic graphs, for which LU-GNNs produce identical embeddings to every node at each layer [Garg et al.,
2020]. We now note that this result also holds for graphs embedded in 3D space. Let us introduce Locally Unordered
3D GNNs (LU3D-GNN) which aggregate embeddings for each node based on the embeddings of the neighbours, as
well as their distance to these neighbours. Formally, in LU3D-GNNs, the messages are defined as:

m(l−1)
u→v = ϕ

(
h(l−1)
u , euv, ∥xu − xv∥

)
(1)

where xv is the 3D position of v. We have the following result.
Lemma 3.1. There exist connected non-isomorphic geometric graphs that differ in the number of conjoined cycles,
girth, size of the largest cycle and cut-edges that LU3D-GNNs cannot distinguish.

On the lefthand side of Figure 2, we show two graphs that are not isomorphic and differing in all mentioned properties,
but which cannot be distinguished by LU3D-GNNs. For clarity of presentation, we presented the graphs in 2D, but
any 3D configuration having all edges of equal length can be used. We prove that they cannot be distinguished by
LU3D-GNNs in Appendix K.

We extend this result to the SBDD context. Specifically, we analyze pairs of graphs corresponding to protein-ligand
complexes. Let G1 = (V1, E1), G2 = (V2, E2) be any two graphs and C(G1, G2) denote a complex graph, i.e.
C(G1, G2) = (V,E), where

V = V1 ∪ V2 and E = E1 ∪ E2 ∪ V1 × V2 (2)
and, importantly, features for all added edged euv ∈ V1 × V2 only depend on the features of nodes at their endpoints.
We have the following results.
Proposition 3.2.

(i) If G1 and G2 are indistinguishable for LU-GNNs, then for any graph P, the complex graphs C(P,G1), C(P,G2)
are also indistinguishable for LU-GNNs.

(ii) There exist ligand graphs G1, G2 differing in graph properties listed in Lemma 3.1, such that for any protein
P , the complexes C(P,G1), C(P,G2) are indistinguishable for models using LU3D-GNNs or LU-GNNs for
intra-ligand and intra-protein message passing and LU-GNNs for inter ligand-protein message passing.

The righthand side of Figure 2 visualizes the proposed statement. The proof can be found in Appendix K. Proposition
3.2 shows that the representational issues of GNNs carry over to the context of SBDD. Specifically, this shows that
there exist distinct protein-ligand structures that cannot be distinguished with LU-GNN models regardless of their depth
or number of parameters. Importantly, LU-GNNs’ inability to distinguish graphs that differ in certain properties implies
that LU-GNNs are unable to learn these properties.

We now take a different perspective and show that generative models for SBDD can be significantly reduced in size and
computational complexity without sacrificing performance.

4 Simple structure-based drug design

In this section, we propose a significantly simplified generative model for SBDD with two crucial components:
innovative model decomposition and explicit incorporation of estimated binding optimization within the model. This
differs from the prevailing paradigm that primarily focuses on learning the data distribution.

4.1 Decoupling the unlabelled molecular graph from atom types

One of the main innovations underlying our framework is the separation of molecular representation into the unlabelled
molecular graph and the labels, the atom types. Our motivation to adopt such an approach is primarily rooted in
empirical findings that highlight the strong relationship between the structure of molecules and their predicted binding
affinities, as approximated by the Vina software. In a preliminary experiment, we investigated how Vina binding scores
behave when we modify the atom types and coordinates, while keeping the underlying graph intact.

Remarkably, our analysis showed a strong coefficient of determination, with an R2 value of 0.76, between the scores of
the original molecules and their modified counterparts. This significant result highlights that a considerable portion
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Figure 3: Comparison of SimpleSBDD to common approaches. Top: SBDD approaches commonly learn to
approximate the data distribution of atom types and 3D coordinates conditioned on the protein pocket. Bottom:
SimpleSBDD first generates the unlabelled graph explicitly optimized for estimated binding affinity. Then it predicts
atom types using different strategies designed for solving different tasks independently of the protein pocket. Finally, it
generates a 3D configuration.

of the variability in predicted binding affinity can be attributed to the information contained within the unlabelled
molecular graph itself, even before incorporating atom-specific details. Please see Appendix A for details. Note that
many graph features characterizing the unlabeled molecular graph, such as the diameter and the number and sizes of
rings, are unlearnable by LU-GNNs (Section 3). We will leverage this insight in defining our model.

It is important to recognize that these findings pertain to the Vina software and not the intrinsic biological process of
binding. While Vina is the most prevalent approximation, it remains just that – an approximation. Nonetheless, upon
conducting similar experiments with Gnina [McNutt et al., 2021], a reportedly significantly more accurate binding
approximation than Vina, we found analogous results. This suggests that the observed behavior is not solely an artifact
of Vina but may be more widespread. Please see Appendix A.4 for details.

Inspired by these findings, we propose a new model SimpleSBDD (see Figure 3). We first generate the high-binding
unlabelled graph structures UM , and generate atom types aM independently of the protein. The model is defined to
approximate the conditional distribution

p(GM |GP ) ≈ p(aM , sM |UM
�

��, GP )p(UM |GP ), (3)

where we assume atoms aM are conditionally independent of the protein pocket GP given the unlabelled graph structure
UM . This approximation does incur information loss as one would expect. However, as we will see in the next section,
performance-aware learning mitigates this effect. The generative model thus reduces to two independent components:
unlabelled graph sampler and atom sampler. We discuss them below.

4.2 Performance-aware learning

Typically, one would train the unlabelled graph model p(UM |GP ) to match the empirical distribution. However, we
hypothesize that observed ligand-protein complexes contain examples with suboptimal binding, and propose to focus
on the most promising complexes with the following procedure. We first learn a binding surrogate gθ to predict binding
affinity from unlabelled graph alone,

gθ(U
M , GP ) ≈ Vina(GM , GP ). (4)

Next, we use gθ to score unlabelled graphs from a repository of molecules, and choose those with the best predicted
affinities. We define a generative distribution

pθ(U
M |GP ) = UNIFORM(

{
UM ∈ UM | gθ(UM , GP ) ∈ [vmin, vmax]

}
), (5)

5
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where UM is a database of unlabelled graph structures, and vmin, vmax are threshold hyperparameters. We set vmin and
vmax to be the 5th and 10th percentiles of all predictions for UM to avoid outliers (see Appendix B for details). As
UM , we used the ZINC250k [Irwin et al., 2012] instead of the CrossDocked2020 [Francoeur et al., 2020], which only
contains 8K unique ligands.

We note that instead of sampling from a database, one can define a generative model over unlabelled graphs. We have
not investigated this direction due to substantial variability in the molecular space even with predefined unlabelled
graphs. Specifically, one can generate at least a thousand distinct and chemically diverse molecules sharing the same
unlabelled graph (see Appendix C for details).

Architecture of the scoring model gθ

Training data for gθ To train the binding affinity predictor gθ, we need pairs of protein-ligand
pairs with their affinity estimates. We chose not to use the CrossDocked2020 dataset, the gold
standard for SBDD, for the following reasons: 1) even though it contains 100K protein-ligand
pairs, there are only around 8K unique ligands, which can be insufficient for generalisation,

(a) Protein pocket with optimal lig-
and size ≈ 20

(b) Protein pocket with optimal lig-
and size ≥ 38

Figure 4: Optimal ligand size has two modes. Representative
examples showing that the scoring model learns the optimal
ligand size which is different for different proteins.

2) for a given protein pocket there may exist ligands
with better affinity than what is present in the data
and 3) for the scoring model to assign good values
only to good structures, it needs to be trained also
on examples with very poor binding affinity which
are not available.

To address the above, we constructed a dataset our-
selves. We sampled 1000 diverse ligand-protein com-
plexes from CrossDocked2020, and included 50 ad-
ditional random molecules from the ZINC250k. This
resulted in 51,000 pairs, for which we computed the
Vina scores. The scoring model gθ was trained with
stochastic gradient descent to minimize the mean
squared error between prediction g and Vina scores.
See Appendix D.1 for details.

Scoring model detects optimal molecule size We visualize the predictions of g as a function of the size of the
molecule. We notice that protein pockets fall under two cases: either there is an optimal size of the ligand (Figure 4a) or
there is a monotonic relationship favouring larger ligands (Figure 4b). We hypothesize the model learnt the optimal
ligand size per pocket, but for some pockets it is larger than the largest available molecule (38 atoms).

4.3 Atom sampler

The atom sampler p(aM , sM |UM ) generates atom types and coordinates of each atom. As mentioned in Section 4.1,
the precise 3D conformation has marginal effect on the Vina score (due to redocking), and therefore we simply generate
any valid 3D configuration with RDKit. We choose a factorisation

p(sM ,aM |UM ) = p(sM |aM , UM )p(aM |UM ), (6)
where p(sM |aM , UM ) is an off-the-shelf conformation generation model available in RDKit, which we discuss in more
detail in Appendix E. In practice, the 3D configuration of the ligand must be in the vicinity of the protein pocket in
order to correctly compute its binding affinity using Vina. We therefore train a separate model which predicts the center
of mass of the ligand based on the protein pocket, and use it to center the conformers. See Appendix F for more details.

To define the generative model over the atom types given unlabelled structure, we adapt an existing generative model
MoFlow [Zang and Wang, 2020], consisting of an unlabelled graph model fU and a conditional atom model fa|U . The
atom model induces a conditional distribution pfa|U (a

M |UM ), which we use as our atom sampling distribution:

p(aM |UM ) := pfa|U (a
M |UM ). (7)

We use a pre-trained MoFlow, so omit it from the trainable parameter count (Table 1).

5 Results

Data We follow related work of Peng et al. [2022], Schneuing et al. [2022] and use the CrossDocked2020 dataset
[Francoeur et al., 2020] for evaluating the models. We use the same train-test split, which separates protein pockets
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Table 1: SimpleSBDD finds high-quality drug candidates up to 1000x faster than competing methods. Comparison
of multiple properties of the CrossDocked2020 test data and other generation methods. † denotes method run exclusively
on CPU. "-" denotes that a metric was not reported and we were unable to estimate. Please refer to Appendix H for
more details regarding the comparison.

Vina Score
(kcal/mol, ↓)

High
Affinity (↑)

QED (↑) SA (↑) Diversity (↑) Novelty (↑) #Params (↓) Time (s, ↓)

Test set -6.99 ± 2.16 - 0.48 ± 0.21 0.73 ± 0.14 - - - -

DiffSBDD (2022) -6.29 ± 1.93 0.37 ± 0.31 0.49 ± 0.19 0.63 ± 0.14 0.79 ± 0.07 0.54 ± 0.14 3.5M 135 ± 52
Pocket2Mol (2022) -7.10 ± 2.56 0.55 ± 0.31 0.57 ± 0.16 0.74 ± 0.13 0.72 ± 0.16 0.45 ± 0.16 3.7M 2504 ± 220
FLAG (2022) -7.25 ± 2.25 0.58 ± 0.24 0.50 ± 0.17 0.75 ± 0.16 0.70 ± 0.15 0.44 ± 0.17 11M 1048 ± 682
DrugGPS (2023) -7.28 ± 2.14 0.57 ± 0.23 0.61 ± 0.22 0.74 ± 0.18 0.68 ± 0.15 0.47 ± 0.15 14.7M 1008 ± 554
TargetDiff (2023a) -6.91 ± 2.25 0.52 ± 0.32 0.48 ± 0.20 0.58 ± 0.13 0.72 ± 0.09 0.47 ± 0.14 2.5M 3428 ± NA
DecompDiff (2023b) -6.76 ± 1.64 0.46 ± 0.36 0.45 ± 0.21 0.61 ± 0.14 0.68 ± 0.10 0.52 ± 0.13 5.0M 6189 ± NA
D3FG (2024) -6.96 ± NA 0.46 ± NA 0.50 ± NA 0.84 ± NA - - - -
EQGAT-diff (2024) -7.42 ± 2.33 - 0.52 ± 0.18 0.70 ± 0.20 0.74 ± 0.07 - 12.3M -

SimpleSBDD (Ours) -7.78 ± 1.47 0.71 ± 0.34 0.61 ± 0.18 0.69 ± 0.09 0.68 ± 0.06 0.51 ± 0.10 23K 3.9† ± 0.9

based on their sequence similarity computed with MMseqs2 [Steinegger and Söding, 2017] and contains 100,000 train
and 100 test protein-ligand pairs.

5.1 Assessing general properties of sampled molecules

We follow the evaluation procedure described by Peng et al. [2022]. For each of 100 test protein pockets, we sample
100 molecules. As evaluation metrics we report 1) Vina Score estimating binding affinity [Alhossary et al., 2015],
2) High Affinity, which is the percentage of generated molecules with binding affinity at least as good as ground
truth, 3) QED, a quantitative estimate of druglikeness, 4) SA, synthetic accesibility, 5) Diversity defined by average
pairwise Tanimoto dissimilarity for the generated molecules in the pocket, 6) Novelty, defined by average Tanimoto
dissimilarity to the most similar molecule from training set, 7) #Params, the number of trainable parameters and 8)
Time to generate 100 molecules in seconds. We include more molecular metrics in Appendix G. As baselines, we use
eight recent methods for SBDD: Pocket2Mol [Peng et al., 2022], DiffSBDD [Schneuing et al., 2022], TargetDiff [Guan
et al., 2023a], DecompDiff [Guan et al., 2023b], FLAG [Zhang et al., 2022], DrugGPS [Zhang and Liu, 2023], D3FG
[Lin et al., 2024] and EQGAT-diff [Le et al., 2024].

We report the results in Table 1. Clearly, SimpleSBDD significantly outperforms all baselines in terms of estimated
binding affinity while being up to 1000x faster despite being run solely on CPU (all baselines use GPU for sampling).
Additionally, our method has only 23k trainable parameters, which is two orders of magnitude less than the baselines.
We provide more details on the baseline comparison in Appendix H. We also provide a visualization of our model
predictions in Figure 5.

5.2 Additional evaluation

We have demonstrated that SimpleSBDD is very competitive on the standard evaluation criteria for SBDD models. We
now discuss broader applications of our proposed model.

Property optimization Due to our novel decomposition of the model into the unlabelled graph and atom labels, we
can optimize the estimated binding affinity and other properties simultaneously. This is especially important, since
molecules without desirable drug-like properties are of significantly diminished practical utility even if the predicted
binding is strong. Specifically, given the target protein we first generate an unlabelled graph with strong predicted
binding affinity. As we noted in Section 4.2 and elaborated on in Appendix C, there is large diversity in the chemical
properties of molecules that share the unlabelled graph. Therefore, for the sampled unlabelled graph, there is enough
flexibility in atom types to enable molecular property optimization.

As an illustrative example, we follow Gómez-Bombarelli et al. [2018] and choose 5 · QED + SA as the property
mixture to optimize alongside predicted binding affinity. Concretely, 50 proposals are sampled using the atom type
model defined in Equation (7) and the candidate with the best property values is selected. We denote this model
variant SimpleSBDD–PO. With this additional procedure we can significantly improve all molecular metrics without
sacrificing binding affinity whilst remaining an order of magnitude faster than baselines. See Appendix I for more
details.

7



What Ails Generative Structure-based Drug Design? A PREPRINT

Figure 5: SimpleSBDD generates diverse drug candidates with stronger predicted binding than reference
molecules. We visualize the predictions of our model for two randomly chosen proteins (PDB ids 3gs6 and 4azf). We
choose 5 molecules with best predicted binding affinities for each protein and compare their Vina score, QED and
synthetic accessibility with the reference molecule.

Table 2: SimpleSBDD is significantly faster than optimization-based methods. Comparison with optimization-based
methods. † denotes method run exclusively on CPU.

Vina Score
(kcal/mol, ↓)

High
Affinity (↑)

QED (↑) SA (↑) Diversity (↑) #Params (↓) Time (s, ↓)

Test set -6.99 ± 2.16 - 0.48 ± 0.21 0.73 ± 0.14 - - -

RGA (2022) -6.93 ± 1.17 0.53 ± 0.41 0.46 ± 0.15 0.80 ± 0.07 0.76 ± 0.01 341K 11576 ± 3717
3D-MCTS (2023) -7.55 ± 1.32 0.66 ± 0.38 0.65 ± 0.14 0.78 ± 0.07 0.62 ± 0.07 0 4150 ± 313
AutoGrow4 (2020) -8.33 ± 1.55 0.81 ± 0.28 0.36 ± 0.17 0.67 ± 0.10 0.65 ± 0.06 0 10800† ± 0

SimpleSBDD–PO -7.98 ± 1.46 0.75 ± 0.35 0.80 ± 0.10 0.73 ± 0.08 0.67 ± 0.06 23K 115† ± 11

Comparison with optimization-based methods So far we have compared our method with multiple baselines
which generate molecules conditioned on a target protein. Neither SimpleSBDD nor any of these baselines has access
to the Vina software during generation. We now also compare with optimization-based methods, i.e. algorithms,
which generate molecules by explicitly using Vina during sampling to directly optimize it. Specifically, we compare
SimpleSBDD–PO with the three best performing methods, i.e. Reinforced Genetic Algorithm [Fu et al., 2022],
3D-Monte Carlo Tree Search (3D-MCTS) [Du et al., 2023] and AutoGrow4.0 [Spiegel and Durrant, 2020]. We present
the results in Table 2.

It is evident that SimpleSBDD–PO is significantly more efficient than all the other methods. Note that these baselines
are not only the best performing, but also the fastest according to [Fu et al., 2022]. What makes them much slower
than SimpleSBDD are the repeated evaluations of the Vina software, which is approximately 20000x slower than
e.g. computing QED (20s vs 0.001s). Furthermore, the only method outperforming SimpleSBDD in terms of Vina
score, AutoGrow4, is significantly worse in terms of QED. SimpleSBDD offers an attractive tradeoff between predicted
binding affinity and the predicted quality of the generated drug candidates at a much lower computational cost.

Efficient scoring for drug repurposing SBDD is a problem of generating novel drugs likely to bind to a given target
pocket. However, an equally important application is drug repurposing, a problem of investigating new therapeutic uses
for existing molecules, which is closely related to determining whether a drug can effectively bind to a specific protein
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target. This is a significant application since, unlike samples generated by machine learning models, existing drugs have
experimentally verified properties and their synthesizability is already established.

We can use our scoring model (Equation (4)) to scan databases of existing drugs and select ones with the best predicted
binding. Moreover, our implementation of the scoring model allows us to do that very efficiently due to the fact that
protein embedding needs only be computed once when scoring multiple molecules. Specifically, it allows for scoring
9100 molecules per second on a single CPU.

To showcase the practicality and efficiency of our scoring model in the context of drug repurposing, we perform the
following experiment. For each protein pocket, we randomly sample 16384 molecules from a database and select 100
of them with predicted Vina scores between 5th and 10th percentile. We then compare the average binding affinity and
other molecular properties with the reference molecules of the target protein. We found that for each protein pocket it
takes around 2 seconds to find 100 diverse molecules with much higher binding affinity and improved other molecular
metrics. Furthermore, we repeated the experiment with ChEMBL dataset [Mendez et al., 2018, Davies et al., 2015] and
found that gθ generalizes well across molecular databases. See Appendix J for details.

6 Conclusion, Broader Impact, and Limitations

We advocate a shift in focus from mere model expressivity to robust generalization. Specifically, we bring to the
forefront inherent limitations in expressivity of GNNs and prove that they carry over to the multibody domain of SBDD.
Furthermore, we show that with a novel model decomposition and explicit binding optimization built into the model,
we can outperform state of the art with significantly simplified models. The unprecedented efficiency and success of
SimpleSBDD not only highlights the potential to reshape the approach to SBDD but also paves the way for streamlining
docking software, especially when assessed with widely adopted tools like Vina and Gnina.

However, there are limitations to our findings. In particular, while we rely on docking software such as Vina, the gold
standard for evaluation in the SBDD realm, the ideal validation would entail wet lab experiments or molecular dynamics
simulations. That said, such methods are often prohibitively expensive and could utilize the significant resources
afforded by models such as SimpleSBDD.

The very nature of SimpleSBDD as a generative model, especially with its property optimization capabilities, brings
with it risks. As SBDD models become increasingly adept at designing molecules with specific properties, we must
remain vigilant of the potential unintended outcomes, since streamlining the design process could accelerate the design
of harmful biochemicals.

Reproducibility statement All our experiments are reproducible. Code and the trained models are available under
MIT Licence at github.com/rafalkarczewski/SimpleSBDD.
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A Decoupling the unlabelled molecular graph from atom types

Here we provide details of experiments we discuss in section 4.1.

A.1 Vina score

Vina uses a scoring function, which approximates the experimentally measured binding affinity with several types of
interactions between the protein and ligand atoms [Trott and Olson, 2010]:

f(GP , GM ) =

K∑
k=1

wk

NP∑
i=1

NM∑
j=1

fk

(
aPi , a

M
j , sPi , s

M
j

)
, (8)

where {fk}Kk=1 represent K types of interatomic interactions that depend on atom types a and 3D coordinates s. The
weights {wk}Kk=1 are pretrained to reflect experimentally measured affinities. We emphasize that lower values of f are
interpreted as stronger binding. To estimate the binding affinity for a given protein-ligand complex (GP , GM ), Vina
performs a local search for the lowest-score 3D configuration of the molecule (a.k.a. redocking). Specifically, gradient
optimization is performed over global translations, global rotations, and torsional rotations T (GM ) of the ligand GM

to optimise its fit to the protein pocket:

Vina(GP , GM ) = min
{
f(GP , ĜM ) : ĜM ∈ T (GM )

}
. (9)

Vina uses the BFGS optimiser [Fletcher, 2000]. Due to the redocking procedure (9), the Vina score can be interpreted
as "binding potential", i.e. molecule’s binding affinity in its optimal pose.

A.2 Influence of unlabelled molecular graphs on Vina scores

Equation (9) indicates that if Vina employed an ideal optimizer to compute the global minimum, the initial 3D
configuration of the molecule would not influence the outcome. Yet, because Vina utilizes an approximate gradient-
based optimization method, variations in the initial 3D configuration can indeed affect the Vina score. To measure
that, we randomly selected 1,000 protein-ligand complexes from the CrossDocked2020 dataset [Francoeur et al., 2020]
and computed the Vina score both before and after modifying the ligand. Here, by ’modifying the ligand’, we refer
to replacing its 3D configuration with a randomly generated conformer using RDKit. As expected, a high R2 = 0.94
emerged indicating insignificant impact of the ligand’s initial 3D configuration on the Vina score (See Figure 6a).

Furthermore, we experimented with changing ligand’s atom types. For a fixed unlabelled graph UM , we re-sample
random atom assignments aM from the empirical atom distributions, while avoiding valence violations (See Appendix
A.3). This procedure changes the molecule and therefore its 3D configuration is most likely no longer energetically
valid. We therefore use RDKit to generate a random conformer of the new molecule and use it to replace the original
3D coordinates. Surprisingly, the R2 coefficient remains relatively high at R2 = 0.76 (see Figure 6b). These findings
suggest that using just the unlabelled graph of the ligand, one can estimate the Vina score with considerable accuracy.
We use this observation in the definition of the model.

A.3 Sampling valid molecules for a given unlabelled graph

Here we provide details on how to randomly modify atom types conditioned on a molecular graph’s structure to obtain
valid molecules. Simply assigning random atom types independently to each node usually yields invalid molecules due
to violated valence constraints. Whether assigning a specific atom type to a given node vMi results in a violated valence
constraint depends on how many and what kind of bonds are connected to it. Specifically, for a bond eij , let o(eij)
denote its multiplicity, i.e. o(eij) = 1 for a single bond, o(eij) = 2 for a double bond etc. Let now

deg(vMi ) =
∑

j:eij∈UM

o(eij) (10)

denote i-th node’s degree. Node’s degree determines what atom types satisfy valence constraints for that node. It is
therefore sufficient to determine the degrees of all nodes in the unlabelled graph and independently sample atom types
for each node conditioned on its degree. Formally, we define the distribution over atom types given the molecule’s
unlabelled graph as

p(aM |UM ) :=

NM∏
i=1

pemp(a
M
i |deg(vMi )), (11)
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(a) Changing initial 3D configuration. (b) Changing atom types and initial 3D configuration

Figure 6: Impact of different transformations of the ligand on the Vina score.

where pemp(a
M
i |deg(vMi )) is the empirical distribution of atom types for a given degrees of the nodes estimated using

the CrossDocked2020 dataset [Francoeur et al., 2020]. This allows for efficient sampling of valid molecules with a
fixed unlabelled graph UM so that the distribution of atom type counts matches the empirical one.

A.4 Justification of the model decomposition - Gnina

In section 4.1, we justified our model decomposition choice through empirical evidence indicating that the unlabelled
molecular graph inherently contains substantial information, as reflected in the Vina score, even when the ligand’s
initial 3D configuration and atom type assignment are varied. We now show that a similar phenomenon can be observed
when, instead of Vina, a reportedly significantly more accurate binding software Gnina [McNutt et al., 2021] is used.

We repeat the experiments from the section A.2 with Gnina instead of Vina and find that for changing the initial 3D
configuration, there is even smaller impact indicated by R2 = 0.97 (due to Gnina also performing redocking). For
changing atom type assignments, R2 = 0.76 as it was for Vina. Please see Figure 7 for details.

B Tradeoff between binding affinity prediction and QED

As seen in Equation (5), our method allows for controlling the binding affinity of the generated ligands. We therefore
investigated the performance of the model when we vary the vmin, vmax thresholds. Specifically, we evaluated 10
different versions of the unlabelled graph sampler with (vmin, vmax) set to (q0, q5), (q5, q10), . . . , (q45, q50), where qk
is the kth percentile of the predictions for UM (note that these percentiles depend on the protein pocket). We note a
trade-off between QED and Binding Affinity of these models, but all of them are still better on both of these criteria
than the samples from the CrossDocked2020 dataset. We show this in Figure 8. We set vmin = q5 and vmax = q10 in
our experiments.

C Chemical diversity with fixed unlabelled graphs

In section 4.2, we introduce the unlabelled graph sampler, which uses a set of existing molecular graphs to define
possible 2D unlabelled graph structures that can be sampled, i.e. unseen graph structures cannot be sampled. We now
argue that this restriction still leaves substantial flexibility in the chemical space.

We performed the following experiment. We randomly sampled 100 molecules from the ZINC250k dataset. For each
molecule, we used its template unlabelled graph to generate novel valid molecules using the procedure described in
Appendix A.3. Whenever we generated a duplicate molecule we tried again. We terminated the procedure when we
generated 1000 unique molecules or reached the limit of 10 failed trials due to duplicate generation.

For 98 of these 100 molecules we successfully generated 1000 unique novel molecules sharing the identical 2D
unlabelled graph including bond types. For the remaining 2, the procedure terminated after generating 665 and 566
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Vina

Gnina

(a) Changing initial 3D configuration (b) Changing atom types and initial 3D configuration

Figure 7: The impact of molecule modifications on binding scores is consistent across Vina and Gnina software.

unique novel molecules respectively. This shows that in 98% of the cases we are able to create at least 1000 novel valid
molecules while keeping the unlabelled graph fixed.

Furthermore, we computed the average Tanimoto similarity between the original molecule and the newly generated
ones sharing the unlabelled graph. We found that the average Tanimoto similarity was 0.28 ± 0.08 across the 100
sampled molecules from ZINC250k. We compared this number with the average pairwise Tanimoto similarity of the
100 molecules original molecules, which was 0.24 (within one standard deviation). We also contrast this number with
the 0.85 similarity threshold, above which molecules have a high probability of having the same activity [Patterson
et al., 1996].

This shows that, even for a fixed 2D molecular graph with defined bond types, we can define a large number of unique
and valid molecules whose similarity to the original molecule is comparable with the pairwise molecular similarity in
the ZINC250k dataset and thus proving the substantial chemical variability.

D Binding affinity approximation model details

In this section we provide more details of the scoring model from Eq. (4). Recall that we want to approximate the
binding affinity estimation defined in Eq. (9) using the protein pocket information and ligand’s unlabelled graph
structure. To that end we represent the protein pocket as a graph with residues as nodes. Each node is equipped with a
one-hot encoding of a residue type (1 of 20 possible amino acids) as a feature vector and 3D coordinates computed as a
center of mass of the corresponding residue. Two nodes are connected with an edge if they are at most 15Å apart and
we limit each node to have at most 24 neighbours. We do not use any edge features. To compute the protein pocket
embedding, we use E(3)-Equivariant Graph Neural Networks (EGNNs) [Satorras et al., 2021].
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Figure 8: Binding Affinity vs QED trade-off. Our model allows for controlling the predicted binding affinity of
generated molecules.

An EGNN layer takes as input a set of node embeddings {h(l−1)
v }v∈V , coordinate embeddings {x(l−1)

v }v∈V and edge
information {euv} and computes output embeddings {h(l)

v }v∈V {x(l)
v }v∈V for nodes and coordinates respectively. One

layer operation can be summarized as follows

m(l−1)
u→v = ϕe

(
h(l−1)
u ,h(l−1)

v , ∥x(l−1)
u − x(l−1)

v ∥, euv
)

x(l)
v = x(l−1)

v + C
∑
u ̸=v

(
x(l−1)
v − x(l−1)

u

)
ϕx(m

(l−1)
u→v )

m(l−1)
v =

∑
u̸=v

m(l−1)
u→v

h(l)
v = ϕh(h

(l−1)
v ,m(l−1)

v ),

(12)

where ϕe, ϕx and ϕh are learnable functions and {h(0)
v }v∈V are initialized to input node features, i.e. one-hot encodings

of amino acid types and {x(0)
v }v∈V are initialized with 3D coordinates of residues’ centers of mass. We encode the

protein as the average embedding of the nodes after L layers:

hP =
1

|V |
∑
v∈V

h(L)
v , (13)

where we use L = 3 in our experiments. ϕe, ϕx and ϕh are all implemented as concatenation of the input followed by a
fully connected 2-layer MLP with hidden and output dimensions of 16 and the SiLU activation function [Hendrycks
and Gimpel, 2016].

We represent the ligand’s unlabelled graph structure with the following four features: (i) number of nodes, (ii) number
of rings, (iii) number of rotatable bonds and (iv) graph diameter. All these features are standardized by subtracting the
mean and dividing by the standard deviation, where these statistics were computed on the train set. The standardized
ligand features are subsequently concatenated with hP and passed through 5 layers of a fully connected MLP with 50
hidden units, ReLU activation functions and 1 output unit. The model has a total of 15k trainable parameters.

D.1 Training details

The dataset for training the scoring model consists of triples (GP , GM , y) representing the protein, ligand and the
binding affinity estimated with Vina respectively. We randomly select 10% of the protein pockets for validation and
the remaining 90% for training. The model is trained to minimize the mean squared error with the Adam optimizer
[Kingma and Ba, 2014] with default parameters of its PyTorch implementation [Paszke et al., 2019]. The model was
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trained with batch size 128 for 10000 steps, after which we did not observe improvements in the validation loss. Model
training took approximately 45 minutes on an Apple M1 CPU.

E RDKit pose generation variability

As mentioned in Section 4.3, we use RDKit to generate 3D pose for a molecule given its molecular graph. We now
argue that there is substantial variation in the poses generated by RDKit for a fixed molecular graph. Specifically,
we performed the following experiment. We randomly sampled 1000 molecules from the ZINC250k dataset. We
subsequently generated 20 poses for each and computed their pairwise distances. Where for two poses of the
same molecule we define their distance as the lowest possible root-mean-square deviation (RMSD) (computed with
rdkit.AllChem.GetBestRMS(mol1, mol2)). We used the following pseudocode.

mols = random.sample(ZINC250k, k=1000)
variation = []
for mol in mols:

poses = [generate_pose(mol) for i in range(20)]
variation.append(average_pairwise_distance(poses))

mean(variation), std(variation)

We found that the average pairwise distance between generated poses is 1.60 Å ± 0.46 Å. This average value is higher
than e.g. the lengths of C-C, C-H, or C-F bonds suggesting that there is considerable variation in the poses generated by
RDKit and it is not merely performing rigid transformations of the same pose.

F Ligand’s center of mass predictor

As mentioned in Section 4.3, in order to accurately estimate the binding affinity for a protein-ligand pair with Vina, the
ligand’s 3D configuration must be in the vicinity of the protein 3D configuration. The reason for that is that the scoring
function defined in Eq. (8) vanishes for atom pairs that are far apart [Trott and Olson, 2010]. Consequently, gradient
based optimization used to find the best 3D configuration (Eq. (9)) will return the original configuration, because all
gradients are zero whenever the protein and ligand are too far apart.

To that end, we train a model, which predicts the center of mass of ligand’s 3D configuration based on the protein
pocket. We subsequently use the model to place the ligands’ 3D configurations computed with RDKit at the predicted
center of mass. As model parametrization we use the EGNN as described in Appendix D. The model output is defined
as:

x̂ =
1

|V |
∑
v∈V

x(L)
v , (14)

where x(L)
v is defined in Eq. (12). As shown in [Satorras et al., 2021], x̂ is then equivariant to translations and rotations

as required for the center of mass predictor model. In our experiments, we used L = 4 layers and a hidden dimension
of 16. The model has 8k trainable parameters and both its number of parameters and runtime were included when
reporting the results for SimpleSBDD models in Table 1.

To train the model, we used the training protein-ligand pairs of the CrossDocked2020 [Francoeur et al., 2020] dataset
described in Section 5. We further split them into train and validation sets to monitor overfitting using a 85-15
train-validation split. Similarly to [Peng et al., 2022], the split was performed to ensure that all validation protein
pockets will have sequence similarity lower than 30% to all training protein pockets.

The model was trained with Adam optimizer [Kingma and Ba, 2014] with default parameters of its PyTorch imple-
mentation [Paszke et al., 2019] to minimize the Euclidean distance between the predicted and ground truth centers of
mass. We used a batch size of 64 and trained the model for 10000 steps until the validation loss converged to ∼ 1.15Å.
Training took approximately 25 minutes on an Apple M1 CPU.

G Additional molecular metrics

Here we provide additional metrics to complement the ones reported in Table 1, which were omitted for presentation
clarity. Namely, we include the Lipinski’s Rule of Five and LogP, which were defined in Section 2. For Lipinski’s
Rule of Five, 5 is the highest possible value. For LogP we do not indicate which method is the best as there is no
straightforward criterion to compare LogP values. In [Peng et al., 2022] it is noted that values in the (−0.4, 5.6) interval
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are considered good drug candidates. Note that for SimpleSBDD, the value of LogP is the closest to the midpoint of
that interval (2.6). None of the other baseline methods reported LogP or the Lipinski’s Rule of Five.

G.1 Novelty of generated molecules

In Section 5 we report the novelty of all the methods as the average Tanimoto dissimilarity to the most similar
molecule in the training set. Since our method also uses ZINC250k dataset, we also measured the novelty when
treating the ZINC250k dataset as the training set. We differentiate between these two metrics as NoveltyCD (treating
CrossDocked2020 as the training set) and NoveltyZ (treating ZINC250K as the training set). We report the numbers in
Table 3.

Table 3: Additional metrics.
Lipinski (↑) LogP NoveltyCD (↑) NoveltyZ (↑)

Test set 4.34 ± 1.14 0.89 ± 2.73 - -

DiffSBDD (2022) 4.73 ± 0.69 1.00 ± 1.90 0.54 ± 0.14 0.52 ± 0.13
Pocket2Mol (2022) 4.90 ± 0.35 1.71 ± 1.98 0.45 ± 0.16 0.46 ± 0.15
FLAG (2022) 4.94 ± 0.14 0.63 ± 2.38 0.44 ± 0.17 0.46 ± 0.15
DrugGPS (2023) 4.92 ± 0.12 0.91 ± 2.15 0.47 ± 0.15 0.48 ± 0.15
TargetDiff (2023a) 4.59 ± 0.83 1.37 ± 2.37 0.47 ± 0.14 0.46 ± 0.13
DecompDiff (2023b) 4.64 ± 0.90 1.57 ± 2.12 0.52 ± 0.13 0.48 ± 0.12
D3FG (2024) 4.97 ± NA 2.82 ± NA - -
EQGAT-diff (2024) 4.66 ± 0.72 - - -

SimpleSBDD 4.96 ± 0.20 3.33 ± 1.49 0.51 ± 0.10 0.47 ± 0.10
SimpleSBDD–PO 5.00 ± 0.03 3.24 ± 0.79 0.50 ± 0.09 0.44 ± 0.09

H Baseline comparison details

In this section we provide more details on the baseline comparison reported in Table 1.

Pocket2Mol We re-evaluated the method using samples generated with a checkpoint available in the official imple-
mentation and obtained results very close to the originally reported.

DiffSBDD The authors did not report some of the metrics, so we generated the samples using checkpoints provided
by the authors in the original implementation. However, when we tried to use the DiffSBDD-inpaint model variant
(reportedly the best one) the sampling produces non-sensical molecules comprising of single atoms. We were able to
generate proper samples using the DiffSBDD-cond model variant and this is what we report in all our comparisons.

FLAG & DrugGPS We used the numbers provided in the original publications. The only exception was Novelty (1 -
Sim.Train in the original publications). We were able to compute Novelty with our code using the samples provided
by the authors. The results differ significantly and we suspect that the similarity was computed differently, but we were
unable to verify as the code repositories do not contain evaluation code.

TargetDiff & DecompDiff In the manuscripts, the authors use a different version of the Vina software, so we
re-evaluate the methods ourselves. For TargetDiff, we use the samples provided by the authors and for DecompDiff, we
generate them using the official implementation and provided checkpoints.

EQGAT-diff We copy the numbers from the original publication. We were unable to verify or reproduce the results,
because evaluation code is not provided. We were also unable to run the method ourselves, because as the authors say
in the official code repository: Note that currently we do not provide the datasets, hence the code is currently just for
reviewing and how the model and training runs are implemented. Also, the trained model checkpoints are provided on
request, but only for unconditional generation models, not condintioned on the protein pocket.

D3FG We copy the results from the original publication, but were unable to verify if the metrics were computed in
the same way as there is no implementation available.
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Table 4: Our method allows for simultaneous optimization of binding and other properties. Comparison of our
method w/ and w/o property optimization. With explicit property optimization, we can significantly improve all metrics
without sacrificing binding affinity. The increased sampling time is still an order of magnitude lower than baseline
methods even though running exclusively on CPU.

Vina Score
(kcal/mol, ↓)

High
Affinity (↑)

QED (↑) SA (↑) Diversity (↑) #Params (↓) Time (s, ↓)

Test set -6.99 ± 2.16 - 0.48 ± 0.21 0.73 ± 0.14 - - -

SimpleSBDD -7.78 ± 1.47 0.71 ± 0.34 0.61 ± 0.18 0.69 ± 0.09 0.68 ± 0.06 23K 3.9† ± 0.9
SimpleSBDD–PO -7.98 ± 1.46 0.75 ± 0.35 0.80 ± 0.10 0.73 ± 0.08 0.67 ± 0.06 23K 115† ± 11

Table 5: Scoring model generalizes across datasets and quickly finds diverse high quality molecules. The scoring
model gθ used for drug repurposing. We score the molecular databases: ZINC250k and ChEMBL respectively with gθ.
The best scoring ones are compared with the reference molecule.

Vina Score
(↓)

QED (↑) SA (↑) Diversity (↑) Time (s, ↓)

Test set -6.99 ± 2.16 0.48 ± 0.21 0.73 ± 0.14 - -

gθ (ZINC) -7.82 ± 1.47 0.66 ± 0.15 0.78 ± 0.08 0.68 ± 0.05 1.8 ± 0.4
gθ (ChEMBL) -8.03 ± 1.56 0.56 ± 0.15 0.79 ± 0.08 0.67 ± 0.07 2.6 ± 1.0

I SimpleSBDD with property optimization

In this section we provide additional details on the property optimization capabilities of SimpleSBDD described in
Section 5.2. Specifically, we show in Table 4 that by the introduction of the additional molecular property procedure,
we improve all of the metrics without sacrificing the diversity of the generated molecules. This comes at the additional
computational cost, which is still orders of magnitude lower than baselines.

J Drug repurposing

As mentioned in Section 5.2, our scoring model can be used for drug repurposing. We found that for each protein
pocket it takes around 2 seconds to find 100 diverse molecules with much higher predicted binding affinity and other
improved molecular metrics. Furthermore, we repeated the experiment with ChEMBL dataset [Mendez et al., 2018,
Davies et al., 2015] and found that gθ generalizes well across molecular databases. See Table 5 for more details

K Representation limits of GNNs for SBDD

In this section we prove claims made in Section 3. We begin with the notion of indistinguishability for LU(3D)-GNNs.
Recall that a layer of a LU-GNN network can be summarized as follows

m(l−1)
u→v = ϕ(h(l−1)

u , euv)

h̃(l−1)
v = AGG{m(l−1)

u→v | u ∈ N(v)}
h(l)
v = COMBINE{h(l−1)

v , h̃(l−1)
v },

(15)

where h
(l)
v is the feature vector of node v after applying l layers and h

(0)
v = hv are v’s input features. A layer of a

LU3D-GNN is defined analogously with messages depending on distances to neighbouring nodes:

m(l−1)
u→v = ϕ(h(l−1)

u , euv, ∥xu − xv∥), (16)

where xv are 3D coordinates of v. Before we discuss indistinguishability, we formally define it.
Definition K.1 (Indistinguishability). We say that graphs G1 = (V,E1), G2 = (W,E2) are indistinguishable by
LU(3D)-GNNs if there exist node orderings (v1, v2, . . . , vN ) and (w1, w2, . . . , wN ) of V and W respectively s.t. for
any choice of ϕ,AGG,COMBINE and network depth L:

h(l)
vi

= h(l)
wi

∀i = 1, . . . , N, l = 1, . . . , L

We denote indistinguishability by G1 ≡ G2 for LU-GNNs and by G1 ≡3D G2 for LU3D-GNNs.
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Figure 9: Construction for Lemma 3.1. Left and Middle: A pair of non-isomorphic connected graphs differing in all
graph properties listed in Lemma 3.1. Right: An example computation tree of depth three, which is identical for nodes
v1 and w1.

In other words, G1, G2 are not distinguishable by LU(3D)-GNNs, if we can pair up their nodes in such a way that
corresponding embeddings remain identical in both graphs after any number of layers of any LU(3D)-GNN. We first
note that, since LU3D-GNNs are strictly more expressive than LU-GNNs, it holds that:

G1 ≡3D G2 =⇒ G1 ≡ G2. (17)

A useful construct for determining indistinguishability is that of computation trees [Jegelka, 2022]:
Definition K.2 (Computation trees). For a graph G = (V,E), the computation tree of node v is defined recursively as
follows:

1. T
(1)
G (v) = hv , where hv is v’s feature vector,

2. for l ≥ 2, the root of T (l)
G (v) is hv , its children are {T (l−1)

G (u) | u ∈ N(v)} and the edge connecting the root
to T

(l−1)
G (u) inherits features evu from G.

We denote the multiset of depth-L computation trees of G as {T (L)
G (v)}v∈V .

Since the multiset of depth-L computation trees represents all information LU-GNNs can extract [Jegelka, 2022], we
see that

G1 ≡ G2 ⇔ ∀L {T (L)
G1

(v)}v∈V1 = {T (L)
G2

(v)}v∈V2
(18)

and analogously for ≡3D whenever the edges of the computation trees carry the information about the distances between
nodes. Using the computation tree terminology, we can now prove Lemma 3.1. We recall it for completeness:
Lemma 3.1. There exist connected non-isomorphic geometric graphs that differ in the number of conjoined cycles,
girth, size of the largest cycle and cut-edges that LU3D-GNNs cannot distinguish.

Proof. In Figure 9 (left and middle), we provide an example of a pair of non-isomorphic connected graphs, which differ
in all mentioned graph properties. Colors indicate feature vectors: nodes with the same color have identical features.
Edge features can be defined as any function of their endpoints, i.e. euv = f(hu, hv) for any f . All edges are of equal
length. For clarity of presentation, the graphs are presented in 2D, but any 3D configuration preserving equal edge
lengths could be used instead.

In the figure, we show node orderings such that T (l)
G1

(vi) = T
(l)
G2

(wi) for all i = 1, . . . , 6 and l ≥ 1. As an example, we

show T
(3)
G1

(v1) in Figure 9 (Right), which is identical to T
(3)
G2

(w1).

We now move on to proving Proposition 3.2. We recall it for completeness:
Proposition 3.2.

(i) If G1 and G2 are indistinguishable for LU-GNNs, then for any graph P, the complex graphs C(P,G1), C(P,G2)
are also indistinguishable for LU-GNNs.

(ii) There exist ligand graphs G1, G2 differing in graph properties listed in Lemma 3.1, such that for any protein
P , the complexes C(P,G1), C(P,G2) are indistinguishable for models using LU3D-GNNs or LU-GNNs for
intra-ligand and intra-protein message passing and LU-GNNs for inter ligand-protein message passing.

Proof. We begin with proving (i). We will abuse notation slightly and for a graph G = (V,E) write v ∈ V and v ∈ G
interchangeably. We will also write NG(v) to denote the neighbourhood of v in G whenever we want to emphasize
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which graph we are considering. Let Ci = C(P,Gi) for notation brevity and let (v1, . . . , vN ) and (w1, . . . , wN ) be
node orderings of G1 and G2 respectively such that T (l)

G1
(vi) = T

(l)
G2

(wi), for all i = 1, . . . , N and l ≥ 1. We can find
such an ordering, because G1 ≡ G2. Let now (p1, . . . , pK) be any ordering of nodes of P . We will show that for
(u1, . . . , uN+K) = (p1, . . . , pK , v1, . . . , vN ) and (u′

1, . . . , u
′
N+K) = (p1, . . . , pK , w1, . . . , wN ) the following holds:

T
(l)
C1

(ui) = T
(l)
C2

(u′
i) ∀l ≥ 1. (19)

We start with an auxiliary fact that for all i, j = 1, . . . , N and any l ≥ 1 the following holds:(
T

(l)
G1

(vi) = T
(l)
G1

(vj)
)
⇒ T

(l)
C1

(vi) = T
(l)
C1

(vj). (20)

We show (20) by induction. The base case of l = 1 is trivial since T
(1)
G (v) = hv for any v and G. Assume now that

(20) holds for k = 1, . . . , l and T
(l+1)
G1

(vi) = T
(l+1)
G1

(vj). We will show that T (l+1)
C1

(vi) = T
(l+1)
C1

(vj). We first note
that the roots coincide:

ROOT(T (l+1)
C1

(vi)) = hvi = hvj = ROOT(T (l+1)
C1

(vj)) (21)
from the base case. Furthermore

CHILDREN
(
T

(l+1)
C1

(vi)
)
= {T (l)

C1
(v) | v ∈ NC1

(vi)}

= {T (l)
C1

(v) | v ∈ NG1(vi)} ∪ {T (l)
C1

(p) | p ∈ P )}
(22)

Now since T
(l+1)
G1

(vi) = T
(l+1)
G1

(vj), it holds that:

{T (l)
G1

(v) | v ∈ NG1
(vi)} = {T (l)

G1
(v) | v ∈ NG1

(vj)}
and therefore by our induction assumption:

{T (l)
C1

(v) | v ∈ NG1
(vi)} = {T (l)

C1
(v) | v ∈ NG1

(vj)}
and subsequently, continuing (22):

CHILDREN
(
T

(l+1)
C1

(vi)
)
= {T (l)

C1
(v) | v ∈ NC1

(vi)}

= {T (l)
C1

(v) | v ∈ NG1
(vi)} ∪ {T (l)

C1
(p) | p ∈ P )}

= {T (l)
C1

(v) | v ∈ NG1(vj)} ∪ {T (l)
C1

(p) | p ∈ P )}

= {T (l)
C1

(v) | v ∈ NC1
(vj)}

= CHILDREN
(
T

(l+1)
C1

(vj)
)
.

(23)

Combining (21) and (23) we have shown that T (l+1)
C1

(vi) = T
(l+1)
C1

(vj) and therefore proven (20). We now proceed to
show (19) by proving a stronger statement, i.e. that for all l ≥ 1 and all i, j = 1, . . . , N, k = 1, . . . ,K the following
hold:

(1)
(
T

(l)
G1

(vi) = T
(l)
G2

(wj)
)
⇒ T

(l)
C1

(vi) = T
(l)
C2

(wj) (24)

(2) T
(l)
C1

(pk) = T
(l)
C2

(pk) (25)

Again, we proceed with a proof by induction and note that the base case of l = 1 is trivial, because all computation
trees are just features of roots. Assume now that (24) and (25) hold for k = 1, . . . , l. We will show they also hold for
k = l + 1. Let us first consider any k = 1, . . . ,K and note that

ROOT
(
T

(l+1)
C1

(pk)
)
= hpk

= ROOT
(
T

(l+1)
C2

(pk)
)
. (26)

And for the children:

CHILDREN
(
T

(l+1)
C1

(pk)
)
= {T (l)

C1
(v) | v ∈ NC1

(pk)}

= {T (l)
C1

(p) | p ∈ NP (pk)} ∪ {T (l)
C1

(v) | v ∈ G1}.
(27)

Since G1 ≡ G2, it holds that {T (l)
G1

(v)}v∈G1
= {T (l)

G2
(w)}w∈G2

and therefore, by the induction assumption (24):

{T (l)
C1

(v) | v ∈ G1} = {T (l)
C2

(w) | w ∈ G2}. (28)
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Furthermore, by the induction assumption (25), it holds that

{T (l)
C1

(p) | p ∈ NP (pk)} = {T (l)
C2

(p) | p ∈ NP (pk)}. (29)

Combining (28) and (29) yields:

CHILDREN
(
T

(l+1)
C1

(pk)
)
= {T (l)

C1
(v) | v ∈ NC1

(pk)}

= {T (l)
C1

(p) | p ∈ NP (pk)} ∪ {T (l)
C1

(v) | v ∈ G1}

= {T (l)
C2

(p) | p ∈ NP (pk) } ∪ {T (l)
C2

(w) | w ∈ G2}

= {T (l)
C2

(w) | w ∈ NC2
(pk) }

= CHILDREN
(
T

(l+1)
C2

(pk)
)

(30)

and thus (26) and (30) imply
T

(l+1)
C1

(pk) = T
(l+1)
C2

(pk). (31)

We will now show that T (l+1)
C1

(vi) = T
(l+1)
C2

(wi) for all i. Consider now any i = 1, . . . , N and note that:

ROOT
(
T

(l+1)
C1

(vi)
)
= hvi = hwi = ROOT

(
T

(l+1)
C2

(wi)
)
. (32)

Moreover:

CHILDREN
(
T

(l+1)
C1

(vi)
)
= {T (l)

C1
(v) | v ∈ NC1(vi)}

= {T (l)
C1

(v) | v ∈ NG1
(vi)} ∪ {T (l)

C1
(p) | p ∈ P}.

(33)

Since G1 ≡ G2, it holds that T (l+1)
G1

(vi) = T
(l+1)
G2

(wi) and therefore

{T (l)
G1

(v) | v ∈ NG1(vi)} = {T (l)
G2

(w) | w ∈ NG2(wi)}, so using the induction assumption (24):

{T (l)
C1

(v) | v ∈ NG1(vi)} = {T (l)
C2

(w) | w ∈ NG2(wi)}. (34)

On the other hand, from the induction assumption (25):

{T (l)
C1

(p) | p ∈ P} = {T (l)
C2

(p) | p ∈ P}, (35)

so from (34) and (35), we have:

CHILDREN
(
T

(l+1)
C1

(vi)
)
= {T (l)

C1
(v) | v ∈ NC1(vi)}

= {T (l)
C1

(v) | v ∈ NG1
(vi)} ∪ {T (l)

C1
(p) | p ∈ P}

= {T (l)
C2

(w) | w ∈ NG2(wi)} ∪ {T (l)
C2

(p) | p ∈ P}

= {T (l)
C2

(w) | v ∈ NC2
(wi)}

= CHILDREN
(
T

(l+1)
C2

(wi)
)
.

(36)

Using (32) and (36), we have shown that for all i = 1 . . . , N

T
(l+1)
C1

(vi) = T
(l+1)
C2

(wi). (37)

Now take any i, j = 1, . . . , N , such that T (l+1)
G1

(vi) = T
(l+1)
G2

(wj). Since G1 ≡ G2, it holds that T (l+1)
G1

(vj) =

T
(l+1)
G2

(wj) = T
(l+1)
G1

(vi) and thus:

T
(l+1)
C1

(vi)
(20)
= T

(l+1)
C1

(vj)
(37)
= T

(l+1)
C2

(wj). (38)

Putting together (38) and (31) concludes the induction step and therefore the proof of (24) and (25). An immediate
consequence of (24) is that for all i = 1, . . . , N and l ≥ 1:

T
(l)
C1

(vi) = T
(l)
C2

(wi), (39)
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Figure 10: Molecular graphs indistinguishable by LU-GNNs.

which together with (25) show that for all i = 1, . . . ,K +N and l ≥ 1:

T
(l)
C1

(ui) = T
(l)
C2

(u′
i) (40)

and thus C1 ≡ C2, concluding the proof of (i).

To show (ii), we take G1 and G2 to be molecular graphs corresponding to SMILES representations:
C1CCC2CCCCC2C1 and C1CCC(C1)C2CCCC2 respectively (see Figure 10). All heavy atoms are carbon and
all bonds are single, so all node and edge features are identical. All bonds are also of equal length. We also take an
arbitrary protein graph P to define complexes C1 = C(P,G1), C2 = C(P,G2).

The intra-ligand LU3D-GNN produces identical sets of embeddings for G1 and G2, which can be shown in the same
way as in Lemma 3.1. Similarly for intra-ligand LU-GNNs since G1 ≡3D G2 ⇒ G1 ≡ G2.

The induced subgraphs of C1 and C2 corresponding to nodes of P are identical and therefore any intra-protein GNN
will produce identical sets of embeddings for both.

Now since G1 ≡ G2, it follows from (i) that C1 ≡ C2. Therefore inter protein-ligand LU-GNN will produce identical
embeddings for C1 and C2.

L Empirical demonstration of the theoretical analysis

In Section 3 we provide a theoretical analysis of the expressivity of Graph Neural Networks (GNNs) and we show that
there are inherent limitations in what a GNN can represent for 2-body systems like protein-ligand complexes. As part
of our contribution, we defined a scoring model, which estimates the docking scores based on the unlabelled graph
structure and the target protein (Section 4). Here, we provide an example of a protein pocket and two ligands such that:

• They have different unlabelled graph structures
• They differ in the predicted docking scores to the given protein pocket
• They are identical from the perspective of LUGNNs

The protein has an identifier
BAZ2A_HUMAN_1795_1898_0/5mgl_A_rec_5mgl_7mu_lig_tt_min_0_pocket10.pdb and the two ligands are

• SMILES: C1CCC2CCCCC2C1 (two 6-rings, zero 5-rings); Vina score -5.4
• SMILES: C1CCC(C1)C2CCCC2 (zero 6-rings, two 5-rings); Vina score -5.7

Even though these two ligands have different binding scores to the given protein, our analysis shows that if we defined
the scoring model as a GNN, it would always predict the same value for both of them. See Figure 11
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(a) SMILES: C1CCC2CCCCC2C1 (b) SMILES: C1CCC(C1)C2CCCC2

Figure 11: An example of two different molecules with different binding affinities, which are identical from LU-GNN
perspective.
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